Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds

•The synthesis route purposed demonstrates the formation of BiFeO3 at only 500°C.•The magnetic and ferroelectric properties are comparable to those of bulk BiFeO3.•By this route, several phases in Bi1−xLaxFeO3 system are obtained at only 500°C.•The route developed here could be useful to synthesize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2014-01, Vol.584, p.93-100
Hauptverfasser: Hernández-Ramírez, Anayantzin, Martínez-Luévanos, Antonia, Fuentes, Antonio F., Nelson, Anna-Gay D., Ewing, Rodney C., Montemayor, Sagrario M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 93
container_title Journal of alloys and compounds
container_volume 584
creator Hernández-Ramírez, Anayantzin
Martínez-Luévanos, Antonia
Fuentes, Antonio F.
Nelson, Anna-Gay D.
Ewing, Rodney C.
Montemayor, Sagrario M.
description •The synthesis route purposed demonstrates the formation of BiFeO3 at only 500°C.•The magnetic and ferroelectric properties are comparable to those of bulk BiFeO3.•By this route, several phases in Bi1−xLaxFeO3 system are obtained at only 500°C.•The route developed here could be useful to synthesize other perovskite-type oxides. There are only a few multiferroic compounds, among which BiFeO3 is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO3, LaFeO3 and intermediate phases in the Bi1−xLaxFeO3 system. The chemical reagents used are Bi(NO3)3⋅5H2O, La(NO3)3⋅6H2O, Fe(NO3)3⋅9H2O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO3. The thermal treatment of the precursors, at 500°C for two hours, produces a crystalline mixture of Bi1−xLaxFeO3 and NaNO3. Simple washing eliminates the NaNO3. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.
doi_str_mv 10.1016/j.jallcom.2013.09.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838813021415</els_id><sourcerecordid>1677922681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-92c699988b51cae05bc96ef9791859b8ee6dbdc564960a70f7b6203cb8dc1ff53</originalsourceid><addsrcrecordid>eNqNkUtvEzEUhUeISoTCT0DyBokFM_gRv9igqoIWqaibdm15PNeJI8842J5W4dczUSK2ZXU237nn6J6m-UBwRzARX3bdzsbo0thRTFiHdYcxe9WsiJKsXQuhXzcrrClvFVPqTfO2lB3GmGhGVs2fXylWmFCxsRZkXQ1PtsKA-gPahs22hQny5oDGEGOYNl_RFZoL-Dl-RjE9txXGPWRb5wwop7kC8imjugVUDtMiJRSUPBrnWIOHnFNwaOm5T_M0lHfNhbexwPuzXjaPP74_XN-2d_c3P6-v7lq3lry2mjqhtVaq58RZwLx3WoDXUhPFda8AxNAPjou1FthK7GUvKGauV4Mj3nN22Xw63d3n9HuGUs0YioMY7QRpLoYIKTWlQpH_QQnXlAn1MsoZ1lJJfSzAT6jLqZQM3uxzGG0-GILNcUGzM-cFzXFBg7VZFlx8H88RtjgbfbaTC-WfmSoq1lwcW387cbB88SlANsUFmBwMIYOrZkjhhaS__xq11Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530978795</pqid></control><display><type>article</type><title>Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds</title><source>Elsevier ScienceDirect Journals</source><creator>Hernández-Ramírez, Anayantzin ; Martínez-Luévanos, Antonia ; Fuentes, Antonio F. ; Nelson, Anna-Gay D. ; Ewing, Rodney C. ; Montemayor, Sagrario M.</creator><creatorcontrib>Hernández-Ramírez, Anayantzin ; Martínez-Luévanos, Antonia ; Fuentes, Antonio F. ; Nelson, Anna-Gay D. ; Ewing, Rodney C. ; Montemayor, Sagrario M.</creatorcontrib><description>•The synthesis route purposed demonstrates the formation of BiFeO3 at only 500°C.•The magnetic and ferroelectric properties are comparable to those of bulk BiFeO3.•By this route, several phases in Bi1−xLaxFeO3 system are obtained at only 500°C.•The route developed here could be useful to synthesize other perovskite-type oxides. There are only a few multiferroic compounds, among which BiFeO3 is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO3, LaFeO3 and intermediate phases in the Bi1−xLaxFeO3 system. The chemical reagents used are Bi(NO3)3⋅5H2O, La(NO3)3⋅6H2O, Fe(NO3)3⋅9H2O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO3. The thermal treatment of the precursors, at 500°C for two hours, produces a crystalline mixture of Bi1−xLaxFeO3 and NaNO3. Simple washing eliminates the NaNO3. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2013.09.003</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activated ; Ceramics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystal structure ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; Ferroelectricity and antiferroelectricity ; Ferroelectrics ; Fused salts ; Magnetic measurements ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Mechanical alloying ; Mechanochemical processing ; Nanostructure ; Oxide materials ; Physics ; Precursors ; Sintering ; Sol gel process ; Synthesis</subject><ispartof>Journal of alloys and compounds, 2014-01, Vol.584, p.93-100</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-92c699988b51cae05bc96ef9791859b8ee6dbdc564960a70f7b6203cb8dc1ff53</citedby><cites>FETCH-LOGICAL-c475t-92c699988b51cae05bc96ef9791859b8ee6dbdc564960a70f7b6203cb8dc1ff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838813021415$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28264561$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Ramírez, Anayantzin</creatorcontrib><creatorcontrib>Martínez-Luévanos, Antonia</creatorcontrib><creatorcontrib>Fuentes, Antonio F.</creatorcontrib><creatorcontrib>Nelson, Anna-Gay D.</creatorcontrib><creatorcontrib>Ewing, Rodney C.</creatorcontrib><creatorcontrib>Montemayor, Sagrario M.</creatorcontrib><title>Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds</title><title>Journal of alloys and compounds</title><description>•The synthesis route purposed demonstrates the formation of BiFeO3 at only 500°C.•The magnetic and ferroelectric properties are comparable to those of bulk BiFeO3.•By this route, several phases in Bi1−xLaxFeO3 system are obtained at only 500°C.•The route developed here could be useful to synthesize other perovskite-type oxides. There are only a few multiferroic compounds, among which BiFeO3 is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO3, LaFeO3 and intermediate phases in the Bi1−xLaxFeO3 system. The chemical reagents used are Bi(NO3)3⋅5H2O, La(NO3)3⋅6H2O, Fe(NO3)3⋅9H2O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO3. The thermal treatment of the precursors, at 500°C for two hours, produces a crystalline mixture of Bi1−xLaxFeO3 and NaNO3. Simple washing eliminates the NaNO3. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.</description><subject>Activated</subject><subject>Ceramics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystal structure</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>Ferroelectricity and antiferroelectricity</subject><subject>Ferroelectrics</subject><subject>Fused salts</subject><subject>Magnetic measurements</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Mechanical alloying</subject><subject>Mechanochemical processing</subject><subject>Nanostructure</subject><subject>Oxide materials</subject><subject>Physics</subject><subject>Precursors</subject><subject>Sintering</subject><subject>Sol gel process</subject><subject>Synthesis</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvEzEUhUeISoTCT0DyBokFM_gRv9igqoIWqaibdm15PNeJI8842J5W4dczUSK2ZXU237nn6J6m-UBwRzARX3bdzsbo0thRTFiHdYcxe9WsiJKsXQuhXzcrrClvFVPqTfO2lB3GmGhGVs2fXylWmFCxsRZkXQ1PtsKA-gPahs22hQny5oDGEGOYNl_RFZoL-Dl-RjE9txXGPWRb5wwop7kC8imjugVUDtMiJRSUPBrnWIOHnFNwaOm5T_M0lHfNhbexwPuzXjaPP74_XN-2d_c3P6-v7lq3lry2mjqhtVaq58RZwLx3WoDXUhPFda8AxNAPjou1FthK7GUvKGauV4Mj3nN22Xw63d3n9HuGUs0YioMY7QRpLoYIKTWlQpH_QQnXlAn1MsoZ1lJJfSzAT6jLqZQM3uxzGG0-GILNcUGzM-cFzXFBg7VZFlx8H88RtjgbfbaTC-WfmSoq1lwcW387cbB88SlANsUFmBwMIYOrZkjhhaS__xq11Q</recordid><startdate>20140125</startdate><enddate>20140125</enddate><creator>Hernández-Ramírez, Anayantzin</creator><creator>Martínez-Luévanos, Antonia</creator><creator>Fuentes, Antonio F.</creator><creator>Nelson, Anna-Gay D.</creator><creator>Ewing, Rodney C.</creator><creator>Montemayor, Sagrario M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140125</creationdate><title>Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds</title><author>Hernández-Ramírez, Anayantzin ; Martínez-Luévanos, Antonia ; Fuentes, Antonio F. ; Nelson, Anna-Gay D. ; Ewing, Rodney C. ; Montemayor, Sagrario M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-92c699988b51cae05bc96ef9791859b8ee6dbdc564960a70f7b6203cb8dc1ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activated</topic><topic>Ceramics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystal structure</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>Ferroelectricity and antiferroelectricity</topic><topic>Ferroelectrics</topic><topic>Fused salts</topic><topic>Magnetic measurements</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Mechanical alloying</topic><topic>Mechanochemical processing</topic><topic>Nanostructure</topic><topic>Oxide materials</topic><topic>Physics</topic><topic>Precursors</topic><topic>Sintering</topic><topic>Sol gel process</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Ramírez, Anayantzin</creatorcontrib><creatorcontrib>Martínez-Luévanos, Antonia</creatorcontrib><creatorcontrib>Fuentes, Antonio F.</creatorcontrib><creatorcontrib>Nelson, Anna-Gay D.</creatorcontrib><creatorcontrib>Ewing, Rodney C.</creatorcontrib><creatorcontrib>Montemayor, Sagrario M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Ramírez, Anayantzin</au><au>Martínez-Luévanos, Antonia</au><au>Fuentes, Antonio F.</au><au>Nelson, Anna-Gay D.</au><au>Ewing, Rodney C.</au><au>Montemayor, Sagrario M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2014-01-25</date><risdate>2014</risdate><volume>584</volume><spage>93</spage><epage>100</epage><pages>93-100</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The synthesis route purposed demonstrates the formation of BiFeO3 at only 500°C.•The magnetic and ferroelectric properties are comparable to those of bulk BiFeO3.•By this route, several phases in Bi1−xLaxFeO3 system are obtained at only 500°C.•The route developed here could be useful to synthesize other perovskite-type oxides. There are only a few multiferroic compounds, among which BiFeO3 is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO3, LaFeO3 and intermediate phases in the Bi1−xLaxFeO3 system. The chemical reagents used are Bi(NO3)3⋅5H2O, La(NO3)3⋅6H2O, Fe(NO3)3⋅9H2O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO3. The thermal treatment of the precursors, at 500°C for two hours, produces a crystalline mixture of Bi1−xLaxFeO3 and NaNO3. Simple washing eliminates the NaNO3. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2013.09.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2014-01, Vol.584, p.93-100
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1677922681
source Elsevier ScienceDirect Journals
subjects Activated
Ceramics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Crystal structure
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
Ferroelectricity and antiferroelectricity
Ferroelectrics
Fused salts
Magnetic measurements
Magnetic properties and materials
Magnetic properties of nanostructures
Mechanical alloying
Mechanochemical processing
Nanostructure
Oxide materials
Physics
Precursors
Sintering
Sol gel process
Synthesis
title Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molten%20salts%20activated%20by%20high-energy%20milling:%20A%20useful,%20low-temperature%20route%20for%20the%20synthesis%20of%20multiferroic%20compounds&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Hern%C3%A1ndez-Ram%C3%ADrez,%20Anayantzin&rft.date=2014-01-25&rft.volume=584&rft.spage=93&rft.epage=100&rft.pages=93-100&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2013.09.003&rft_dat=%3Cproquest_cross%3E1677922681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530978795&rft_id=info:pmid/&rft_els_id=S0925838813021415&rfr_iscdi=true