Probabilistic wind power forecasting with online model selection and warped gaussian process
•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2014-08, Vol.84, p.649-663 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | |
container_start_page | 649 |
container_title | Energy conversion and management |
container_volume | 84 |
creator | Kou, Peng Liang, Deliang Gao, Feng Gao, Lin |
description | •A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models.
Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms. |
doi_str_mv | 10.1016/j.enconman.2014.04.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890414003550</els_id><sourcerecordid>1677922346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoG6avxB0CfSyrj5WWuvWEvoFgeTQ3gpiVppNZNaSq1nX5N9XwWmvgYGB4XnnhYexSynWUkj7YbvGHEreQV4rIfu1aGPkK7aSm8F1SqnhNVsJ6Wy3caJ_w94SbYUQ2gi7Yr_uahlhTHOiJQV-TDnyfTli5VOpGKBd8307Lw-85Dll5LsSceaEM4YllcyhJY5Q9xj5PRyIEmS-ryUg0Tt2NsFMePG8z9nPL59_XH_rbm6_fr_-dNOFvndLNwaMcdBRR6sjCqOF6kHbfopgpLXBQJDS6tEAxI0wRrrJKCtQYXSjDqjP2fvT39b7-4C0-F2igPMMGcuBvLTD4JTSvX0ZNVZZO_TONdSe0FALUcXJ72vaQX30Uvgn837r_5n3T-a9aGNkC149dwAFmKcKOST6n1Ybo4ySpnEfTxw2N38SVk8htY8YU1O_-FjSS1V_AYtbnnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562667499</pqid></control><display><type>article</type><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</creator><creatorcontrib>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</creatorcontrib><description>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models.
Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2014.04.051</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Forecasting ; Mathematical models ; Model selection ; Natural energy ; Non-Gaussian ; Online ; Online learning ; Probabilistic forecasting ; Probability theory ; Strategy ; Uncertainty ; Wind energy ; Wind power</subject><ispartof>Energy conversion and management, 2014-08, Vol.84, p.649-663</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</citedby><cites>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2014.04.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28525215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Peng</creatorcontrib><creatorcontrib>Liang, Deliang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><title>Energy conversion and management</title><description>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models.
Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Model selection</subject><subject>Natural energy</subject><subject>Non-Gaussian</subject><subject>Online</subject><subject>Online learning</subject><subject>Probabilistic forecasting</subject><subject>Probability theory</subject><subject>Strategy</subject><subject>Uncertainty</subject><subject>Wind energy</subject><subject>Wind power</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoG6avxB0CfSyrj5WWuvWEvoFgeTQ3gpiVppNZNaSq1nX5N9XwWmvgYGB4XnnhYexSynWUkj7YbvGHEreQV4rIfu1aGPkK7aSm8F1SqnhNVsJ6Wy3caJ_w94SbYUQ2gi7Yr_uahlhTHOiJQV-TDnyfTli5VOpGKBd8307Lw-85Dll5LsSceaEM4YllcyhJY5Q9xj5PRyIEmS-ryUg0Tt2NsFMePG8z9nPL59_XH_rbm6_fr_-dNOFvndLNwaMcdBRR6sjCqOF6kHbfopgpLXBQJDS6tEAxI0wRrrJKCtQYXSjDqjP2fvT39b7-4C0-F2igPMMGcuBvLTD4JTSvX0ZNVZZO_TONdSe0FALUcXJ72vaQX30Uvgn837r_5n3T-a9aGNkC149dwAFmKcKOST6n1Ybo4ySpnEfTxw2N38SVk8htY8YU1O_-FjSS1V_AYtbnnU</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kou, Peng</creator><creator>Liang, Deliang</creator><creator>Gao, Feng</creator><creator>Gao, Lin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SC</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><author>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Model selection</topic><topic>Natural energy</topic><topic>Non-Gaussian</topic><topic>Online</topic><topic>Online learning</topic><topic>Probabilistic forecasting</topic><topic>Probability theory</topic><topic>Strategy</topic><topic>Uncertainty</topic><topic>Wind energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Peng</creatorcontrib><creatorcontrib>Liang, Deliang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Peng</au><au>Liang, Deliang</au><au>Gao, Feng</au><au>Gao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic wind power forecasting with online model selection and warped gaussian process</atitle><jtitle>Energy conversion and management</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>84</volume><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models.
Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2014.04.051</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2014-08, Vol.84, p.649-663 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677922346 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Energy Exact sciences and technology Forecasting Mathematical models Model selection Natural energy Non-Gaussian Online Online learning Probabilistic forecasting Probability theory Strategy Uncertainty Wind energy Wind power |
title | Probabilistic wind power forecasting with online model selection and warped gaussian process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20wind%20power%20forecasting%20with%20online%20model%20selection%20and%20warped%20gaussian%20process&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kou,%20Peng&rft.date=2014-08-01&rft.volume=84&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2014.04.051&rft_dat=%3Cproquest_cross%3E1677922346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562667499&rft_id=info:pmid/&rft_els_id=S0196890414003550&rfr_iscdi=true |