Probabilistic wind power forecasting with online model selection and warped gaussian process

•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2014-08, Vol.84, p.649-663
Hauptverfasser: Kou, Peng, Liang, Deliang, Gao, Feng, Gao, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue
container_start_page 649
container_title Energy conversion and management
container_volume 84
creator Kou, Peng
Liang, Deliang
Gao, Feng
Gao, Lin
description •A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.
doi_str_mv 10.1016/j.enconman.2014.04.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890414003550</els_id><sourcerecordid>1677922346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoG6avxB0CfSyrj5WWuvWEvoFgeTQ3gpiVppNZNaSq1nX5N9XwWmvgYGB4XnnhYexSynWUkj7YbvGHEreQV4rIfu1aGPkK7aSm8F1SqnhNVsJ6Wy3caJ_w94SbYUQ2gi7Yr_uahlhTHOiJQV-TDnyfTli5VOpGKBd8307Lw-85Dll5LsSceaEM4YllcyhJY5Q9xj5PRyIEmS-ryUg0Tt2NsFMePG8z9nPL59_XH_rbm6_fr_-dNOFvndLNwaMcdBRR6sjCqOF6kHbfopgpLXBQJDS6tEAxI0wRrrJKCtQYXSjDqjP2fvT39b7-4C0-F2igPMMGcuBvLTD4JTSvX0ZNVZZO_TONdSe0FALUcXJ72vaQX30Uvgn837r_5n3T-a9aGNkC149dwAFmKcKOST6n1Ybo4ySpnEfTxw2N38SVk8htY8YU1O_-FjSS1V_AYtbnnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562667499</pqid></control><display><type>article</type><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</creator><creatorcontrib>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</creatorcontrib><description>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2014.04.051</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Forecasting ; Mathematical models ; Model selection ; Natural energy ; Non-Gaussian ; Online ; Online learning ; Probabilistic forecasting ; Probability theory ; Strategy ; Uncertainty ; Wind energy ; Wind power</subject><ispartof>Energy conversion and management, 2014-08, Vol.84, p.649-663</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</citedby><cites>FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2014.04.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28525215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Peng</creatorcontrib><creatorcontrib>Liang, Deliang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><title>Energy conversion and management</title><description>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Model selection</subject><subject>Natural energy</subject><subject>Non-Gaussian</subject><subject>Online</subject><subject>Online learning</subject><subject>Probabilistic forecasting</subject><subject>Probability theory</subject><subject>Strategy</subject><subject>Uncertainty</subject><subject>Wind energy</subject><subject>Wind power</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoG6avxB0CfSyrj5WWuvWEvoFgeTQ3gpiVppNZNaSq1nX5N9XwWmvgYGB4XnnhYexSynWUkj7YbvGHEreQV4rIfu1aGPkK7aSm8F1SqnhNVsJ6Wy3caJ_w94SbYUQ2gi7Yr_uahlhTHOiJQV-TDnyfTli5VOpGKBd8307Lw-85Dll5LsSceaEM4YllcyhJY5Q9xj5PRyIEmS-ryUg0Tt2NsFMePG8z9nPL59_XH_rbm6_fr_-dNOFvndLNwaMcdBRR6sjCqOF6kHbfopgpLXBQJDS6tEAxI0wRrrJKCtQYXSjDqjP2fvT39b7-4C0-F2igPMMGcuBvLTD4JTSvX0ZNVZZO_TONdSe0FALUcXJ72vaQX30Uvgn837r_5n3T-a9aGNkC149dwAFmKcKOST6n1Ybo4ySpnEfTxw2N38SVk8htY8YU1O_-FjSS1V_AYtbnnU</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kou, Peng</creator><creator>Liang, Deliang</creator><creator>Gao, Feng</creator><creator>Gao, Lin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SC</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Probabilistic wind power forecasting with online model selection and warped gaussian process</title><author>Kou, Peng ; Liang, Deliang ; Gao, Feng ; Gao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-bcedd73d3d63de053024a364fda5166c5ac1163b5aad805519f5260e2ed9b3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Model selection</topic><topic>Natural energy</topic><topic>Non-Gaussian</topic><topic>Online</topic><topic>Online learning</topic><topic>Probabilistic forecasting</topic><topic>Probability theory</topic><topic>Strategy</topic><topic>Uncertainty</topic><topic>Wind energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Peng</creatorcontrib><creatorcontrib>Liang, Deliang</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Peng</au><au>Liang, Deliang</au><au>Gao, Feng</au><au>Gao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic wind power forecasting with online model selection and warped gaussian process</atitle><jtitle>Energy conversion and management</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>84</volume><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>•A new online ensemble model for the probabilistic wind power forecasting.•Quantifying the non-Gaussian uncertainties in wind power.•Online model selection that tracks the time-varying characteristic of wind generation.•Dynamically altering the input features.•Recursive update of base models. Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2014.04.051</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2014-08, Vol.84, p.649-663
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1677922346
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Energy
Exact sciences and technology
Forecasting
Mathematical models
Model selection
Natural energy
Non-Gaussian
Online
Online learning
Probabilistic forecasting
Probability theory
Strategy
Uncertainty
Wind energy
Wind power
title Probabilistic wind power forecasting with online model selection and warped gaussian process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20wind%20power%20forecasting%20with%20online%20model%20selection%20and%20warped%20gaussian%20process&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kou,%20Peng&rft.date=2014-08-01&rft.volume=84&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2014.04.051&rft_dat=%3Cproquest_cross%3E1677922346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562667499&rft_id=info:pmid/&rft_els_id=S0196890414003550&rfr_iscdi=true