Building layered, multilingual sentiment lexicons at synset and lemma levels
Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexico...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2014-10, Vol.41 (13), p.5984-5994 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5994 |
---|---|
container_issue | 13 |
container_start_page | 5984 |
container_title | Expert systems with applications |
container_volume | 41 |
creator | Cruz, Fermín L. Troyano, José A. Pontes, Beatriz Ortega, F. Javier |
description | Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available. |
doi_str_mv | 10.1016/j.eswa.2014.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414001997</els_id><sourcerecordid>1567117521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</originalsourceid><addsrcrecordid>eNqFkE2L1EAQhhtRcFz9A55yETyYsbrTHwl40UV3hQEvem4q_SE9dJK1K1l3_r09zOJRoaiiiud9C17GXnPYc-D6_XEf6DfuBXC5h1qgnrAd703XajN0T9kOBmVayY18zl4QHQG4ATA7dvi0pezT_LPJeAol-HfNtOU15XraMDcU5jVNtTU5PCS3zNTg2tBpprA2OPt6nias_T5kesmeRcwUXj3OK_bjy-fv17ft4dvN1-uPh9ZJCWsbBQihoFe9GHvvcJQ9DF4aL0FGNLrnZohD3f3IldGxH7tRR81FRDdgh90Ve3vxvSvLry3QaqdELuSMc1g2slwbMwjRcfl_VGnDuVGCV1RcUFcWohKivStpwnKyHOw5ZXu055TtOWULtUBV0ZtHfySHORacXaK_StEr0FKeuQ8XrsYU7lMollwKsws-leBW65f0rzd_AO4okn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567117521</pqid></control><display><type>article</type><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</creator><creatorcontrib>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</creatorcontrib><description>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.04.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Automation ; Buildings ; Computer science; control theory; systems ; Construction ; Data mining ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Expert systems ; Memory organisation. Data processing ; Multilingual sentiment lexicons ; Orientation ; Sentiment analysis ; Software ; Spanish resources for sentiment analysis ; Speech and sound recognition and synthesis. Linguistics ; Tasks</subject><ispartof>Expert systems with applications, 2014-10, Vol.41 (13), p.5984-5994</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</citedby><cites>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2014.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28506445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz, Fermín L.</creatorcontrib><creatorcontrib>Troyano, José A.</creatorcontrib><creatorcontrib>Pontes, Beatriz</creatorcontrib><creatorcontrib>Ortega, F. Javier</creatorcontrib><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><title>Expert systems with applications</title><description>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Buildings</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Memory organisation. Data processing</subject><subject>Multilingual sentiment lexicons</subject><subject>Orientation</subject><subject>Sentiment analysis</subject><subject>Software</subject><subject>Spanish resources for sentiment analysis</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Tasks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE2L1EAQhhtRcFz9A55yETyYsbrTHwl40UV3hQEvem4q_SE9dJK1K1l3_r09zOJRoaiiiud9C17GXnPYc-D6_XEf6DfuBXC5h1qgnrAd703XajN0T9kOBmVayY18zl4QHQG4ATA7dvi0pezT_LPJeAol-HfNtOU15XraMDcU5jVNtTU5PCS3zNTg2tBpprA2OPt6nias_T5kesmeRcwUXj3OK_bjy-fv17ft4dvN1-uPh9ZJCWsbBQihoFe9GHvvcJQ9DF4aL0FGNLrnZohD3f3IldGxH7tRR81FRDdgh90Ve3vxvSvLry3QaqdELuSMc1g2slwbMwjRcfl_VGnDuVGCV1RcUFcWohKivStpwnKyHOw5ZXu055TtOWULtUBV0ZtHfySHORacXaK_StEr0FKeuQ8XrsYU7lMollwKsws-leBW65f0rzd_AO4okn8</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Cruz, Fermín L.</creator><creator>Troyano, José A.</creator><creator>Pontes, Beatriz</creator><creator>Ortega, F. Javier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><author>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Buildings</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Memory organisation. Data processing</topic><topic>Multilingual sentiment lexicons</topic><topic>Orientation</topic><topic>Sentiment analysis</topic><topic>Software</topic><topic>Spanish resources for sentiment analysis</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Fermín L.</creatorcontrib><creatorcontrib>Troyano, José A.</creatorcontrib><creatorcontrib>Pontes, Beatriz</creatorcontrib><creatorcontrib>Ortega, F. Javier</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Fermín L.</au><au>Troyano, José A.</au><au>Pontes, Beatriz</au><au>Ortega, F. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building layered, multilingual sentiment lexicons at synset and lemma levels</atitle><jtitle>Expert systems with applications</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>41</volume><issue>13</issue><spage>5984</spage><epage>5994</epage><pages>5984-5994</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.04.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2014-10, Vol.41 (13), p.5984-5994 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677922314 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Artificial intelligence Automation Buildings Computer science control theory systems Construction Data mining Data processing. List processing. Character string processing Exact sciences and technology Expert systems Memory organisation. Data processing Multilingual sentiment lexicons Orientation Sentiment analysis Software Spanish resources for sentiment analysis Speech and sound recognition and synthesis. Linguistics Tasks |
title | Building layered, multilingual sentiment lexicons at synset and lemma levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20layered,%20multilingual%20sentiment%20lexicons%20at%20synset%20and%20lemma%20levels&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cruz,%20Ferm%C3%ADn%20L.&rft.date=2014-10-01&rft.volume=41&rft.issue=13&rft.spage=5984&rft.epage=5994&rft.pages=5984-5994&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.04.005&rft_dat=%3Cproquest_cross%3E1567117521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567117521&rft_id=info:pmid/&rft_els_id=S0957417414001997&rfr_iscdi=true |