Building layered, multilingual sentiment lexicons at synset and lemma levels

Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2014-10, Vol.41 (13), p.5984-5994
Hauptverfasser: Cruz, Fermín L., Troyano, José A., Pontes, Beatriz, Ortega, F. Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5994
container_issue 13
container_start_page 5984
container_title Expert systems with applications
container_volume 41
creator Cruz, Fermín L.
Troyano, José A.
Pontes, Beatriz
Ortega, F. Javier
description Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.
doi_str_mv 10.1016/j.eswa.2014.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414001997</els_id><sourcerecordid>1567117521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</originalsourceid><addsrcrecordid>eNqFkE2L1EAQhhtRcFz9A55yETyYsbrTHwl40UV3hQEvem4q_SE9dJK1K1l3_r09zOJRoaiiiud9C17GXnPYc-D6_XEf6DfuBXC5h1qgnrAd703XajN0T9kOBmVayY18zl4QHQG4ATA7dvi0pezT_LPJeAol-HfNtOU15XraMDcU5jVNtTU5PCS3zNTg2tBpprA2OPt6nias_T5kesmeRcwUXj3OK_bjy-fv17ft4dvN1-uPh9ZJCWsbBQihoFe9GHvvcJQ9DF4aL0FGNLrnZohD3f3IldGxH7tRR81FRDdgh90Ve3vxvSvLry3QaqdELuSMc1g2slwbMwjRcfl_VGnDuVGCV1RcUFcWohKivStpwnKyHOw5ZXu055TtOWULtUBV0ZtHfySHORacXaK_StEr0FKeuQ8XrsYU7lMollwKsws-leBW65f0rzd_AO4okn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567117521</pqid></control><display><type>article</type><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</creator><creatorcontrib>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</creatorcontrib><description>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.04.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Automation ; Buildings ; Computer science; control theory; systems ; Construction ; Data mining ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Expert systems ; Memory organisation. Data processing ; Multilingual sentiment lexicons ; Orientation ; Sentiment analysis ; Software ; Spanish resources for sentiment analysis ; Speech and sound recognition and synthesis. Linguistics ; Tasks</subject><ispartof>Expert systems with applications, 2014-10, Vol.41 (13), p.5984-5994</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</citedby><cites>FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2014.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28506445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz, Fermín L.</creatorcontrib><creatorcontrib>Troyano, José A.</creatorcontrib><creatorcontrib>Pontes, Beatriz</creatorcontrib><creatorcontrib>Ortega, F. Javier</creatorcontrib><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><title>Expert systems with applications</title><description>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Buildings</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Memory organisation. Data processing</subject><subject>Multilingual sentiment lexicons</subject><subject>Orientation</subject><subject>Sentiment analysis</subject><subject>Software</subject><subject>Spanish resources for sentiment analysis</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Tasks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE2L1EAQhhtRcFz9A55yETyYsbrTHwl40UV3hQEvem4q_SE9dJK1K1l3_r09zOJRoaiiiud9C17GXnPYc-D6_XEf6DfuBXC5h1qgnrAd703XajN0T9kOBmVayY18zl4QHQG4ATA7dvi0pezT_LPJeAol-HfNtOU15XraMDcU5jVNtTU5PCS3zNTg2tBpprA2OPt6nias_T5kesmeRcwUXj3OK_bjy-fv17ft4dvN1-uPh9ZJCWsbBQihoFe9GHvvcJQ9DF4aL0FGNLrnZohD3f3IldGxH7tRR81FRDdgh90Ve3vxvSvLry3QaqdELuSMc1g2slwbMwjRcfl_VGnDuVGCV1RcUFcWohKivStpwnKyHOw5ZXu055TtOWULtUBV0ZtHfySHORacXaK_StEr0FKeuQ8XrsYU7lMollwKsws-leBW65f0rzd_AO4okn8</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Cruz, Fermín L.</creator><creator>Troyano, José A.</creator><creator>Pontes, Beatriz</creator><creator>Ortega, F. Javier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Building layered, multilingual sentiment lexicons at synset and lemma levels</title><author>Cruz, Fermín L. ; Troyano, José A. ; Pontes, Beatriz ; Ortega, F. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f2022508582b8dcab4809d47d404fa768179f947ddb1576f8b3b6f612fac9a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Buildings</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Memory organisation. Data processing</topic><topic>Multilingual sentiment lexicons</topic><topic>Orientation</topic><topic>Sentiment analysis</topic><topic>Software</topic><topic>Spanish resources for sentiment analysis</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Fermín L.</creatorcontrib><creatorcontrib>Troyano, José A.</creatorcontrib><creatorcontrib>Pontes, Beatriz</creatorcontrib><creatorcontrib>Ortega, F. Javier</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Fermín L.</au><au>Troyano, José A.</au><au>Pontes, Beatriz</au><au>Ortega, F. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building layered, multilingual sentiment lexicons at synset and lemma levels</atitle><jtitle>Expert systems with applications</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>41</volume><issue>13</issue><spage>5984</spage><epage>5994</epage><pages>5984-5994</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Many tasks related to sentiment analysis rely on sentiment lexicons, lexical resources containing information about the emotional implications of words (e.g., sentiment orientation of words, positive or negative). In this work, we present an automatic method for building lemma-level sentiment lexicons, which has been applied to obtain lexicons for English, Spanish and other three official languages in Spain. Our lexicons are multi-layered, allowing applications to trade off between the amount of available words and the accuracy of the estimations. Our evaluations show high accuracy values in all cases. As a previous step to the lemma-level lexicons, we have built a synset-level lexicon for English similar to SentiWordNet 3.0, one of the most used sentiment lexicons nowadays. We have made several improvements in the original SentiWordNet 3.0 building method, reflecting significantly better estimations of positivity and negativity, according to our evaluations. The resource containing all the lexicons, ML-SentiCon, is publicly available.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.04.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2014-10, Vol.41 (13), p.5984-5994
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1677922314
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial intelligence
Automation
Buildings
Computer science
control theory
systems
Construction
Data mining
Data processing. List processing. Character string processing
Exact sciences and technology
Expert systems
Memory organisation. Data processing
Multilingual sentiment lexicons
Orientation
Sentiment analysis
Software
Spanish resources for sentiment analysis
Speech and sound recognition and synthesis. Linguistics
Tasks
title Building layered, multilingual sentiment lexicons at synset and lemma levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20layered,%20multilingual%20sentiment%20lexicons%20at%20synset%20and%20lemma%20levels&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cruz,%20Ferm%C3%ADn%20L.&rft.date=2014-10-01&rft.volume=41&rft.issue=13&rft.spage=5984&rft.epage=5994&rft.pages=5984-5994&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.04.005&rft_dat=%3Cproquest_cross%3E1567117521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567117521&rft_id=info:pmid/&rft_els_id=S0957417414001997&rfr_iscdi=true