Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping

The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2015-04, Vol.38 (4), p.761-771
Hauptverfasser: Janssens, Frank L., van der Ha, Jozef C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 4
container_start_page 761
container_title Journal of guidance, control, and dynamics
container_volume 38
creator Janssens, Frank L.
van der Ha, Jozef C.
description The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.
doi_str_mv 10.2514/1.G000123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677922135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</originalsourceid><addsrcrecordid>eNp9kUFPAjEQhRujiYge_AdNvGjCYqfdbXePBBVJIB6Ac9MuXSyBLrbdRP69JXLy4GmSN19eZt5D6B7IkBaQP8NwQggByi5QDwrGMlaW-SXqEcEgK0hFrtFNCNuEMA6ih1aLqLTd2XjEbYMXB-ucdRu8UNHskmrwyq2Nx6Nvq3Z4-em7EAd46qLxLglzFQKet9G2boCVW-MXtU8Wm1t01ahdMHfn2UfLt9fl-D2bfUym49EsqxmUMcuNNkQLowkxWlBDDatNw1gJtGiqGijXoiYNTWuidFETyivOhFkraEAXrI8ef20Pvv3qTIhyb0OdDlfOtF2QwIWoKAV2Qh_-oNu2O_0QJM2rvExxMPEfBZzTnFe5oIl6-qVq34bgTSMP3u6VP0og8tSCBHlugf0APWd3Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662469472</pqid></control><display><type>article</type><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><source>Alma/SFX Local Collection</source><creator>Janssens, Frank L. ; van der Ha, Jozef C.</creator><creatorcontrib>Janssens, Frank L. ; van der Ha, Jozef C.</creatorcontrib><description>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000123</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Atomic absorption analysis ; Damping ; Eigenvalues ; Eigenvectors ; Liapunov functions ; Mass-spring systems ; Mathematical analysis ; Mathematical models ; Motion stability ; Parameters ; Satellite configurations ; Satellites ; Spectroscopy ; Spinning ; Spring constant ; Stability ; Thrust</subject><ispartof>Journal of guidance, control, and dynamics, 2015-04, Vol.38 (4), p.761-771</ispartof><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</citedby><cites>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Janssens, Frank L.</creatorcontrib><creatorcontrib>van der Ha, Jozef C.</creatorcontrib><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><title>Journal of guidance, control, and dynamics</title><description>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</description><subject>Atomic absorption analysis</subject><subject>Damping</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Liapunov functions</subject><subject>Mass-spring systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Motion stability</subject><subject>Parameters</subject><subject>Satellite configurations</subject><subject>Satellites</subject><subject>Spectroscopy</subject><subject>Spinning</subject><subject>Spring constant</subject><subject>Stability</subject><subject>Thrust</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFPAjEQhRujiYge_AdNvGjCYqfdbXePBBVJIB6Ac9MuXSyBLrbdRP69JXLy4GmSN19eZt5D6B7IkBaQP8NwQggByi5QDwrGMlaW-SXqEcEgK0hFrtFNCNuEMA6ih1aLqLTd2XjEbYMXB-ucdRu8UNHskmrwyq2Nx6Nvq3Z4-em7EAd46qLxLglzFQKet9G2boCVW-MXtU8Wm1t01ahdMHfn2UfLt9fl-D2bfUym49EsqxmUMcuNNkQLowkxWlBDDatNw1gJtGiqGijXoiYNTWuidFETyivOhFkraEAXrI8ef20Pvv3qTIhyb0OdDlfOtF2QwIWoKAV2Qh_-oNu2O_0QJM2rvExxMPEfBZzTnFe5oIl6-qVq34bgTSMP3u6VP0og8tSCBHlugf0APWd3Ng</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Janssens, Frank L.</creator><creator>van der Ha, Jozef C.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><author>Janssens, Frank L. ; van der Ha, Jozef C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic absorption analysis</topic><topic>Damping</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Liapunov functions</topic><topic>Mass-spring systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Motion stability</topic><topic>Parameters</topic><topic>Satellite configurations</topic><topic>Satellites</topic><topic>Spectroscopy</topic><topic>Spinning</topic><topic>Spring constant</topic><topic>Stability</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssens, Frank L.</creatorcontrib><creatorcontrib>van der Ha, Jozef C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssens, Frank L.</au><au>van der Ha, Jozef C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>38</volume><issue>4</issue><spage>761</spage><epage>771</epage><pages>761-771</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000123</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2015-04, Vol.38 (4), p.761-771
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_1677922135
source Alma/SFX Local Collection
subjects Atomic absorption analysis
Damping
Eigenvalues
Eigenvectors
Liapunov functions
Mass-spring systems
Mathematical analysis
Mathematical models
Motion stability
Parameters
Satellite configurations
Satellites
Spectroscopy
Spinning
Spring constant
Stability
Thrust
title Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Spinning%20Satellite%20Under%20Axial%20Thrust,%20Internal%20Mass%20Motion,%20and%20Damping&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Janssens,%20Frank%20L.&rft.date=2015-04-01&rft.volume=38&rft.issue=4&rft.spage=761&rft.epage=771&rft.pages=761-771&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000123&rft_dat=%3Cproquest_cross%3E1677922135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662469472&rft_id=info:pmid/&rfr_iscdi=true