Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping
The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by ex...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2015-04, Vol.38 (4), p.761-771 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 4 |
container_start_page | 761 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 38 |
creator | Janssens, Frank L. van der Ha, Jozef C. |
description | The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed. |
doi_str_mv | 10.2514/1.G000123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677922135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</originalsourceid><addsrcrecordid>eNp9kUFPAjEQhRujiYge_AdNvGjCYqfdbXePBBVJIB6Ac9MuXSyBLrbdRP69JXLy4GmSN19eZt5D6B7IkBaQP8NwQggByi5QDwrGMlaW-SXqEcEgK0hFrtFNCNuEMA6ih1aLqLTd2XjEbYMXB-ucdRu8UNHskmrwyq2Nx6Nvq3Z4-em7EAd46qLxLglzFQKet9G2boCVW-MXtU8Wm1t01ahdMHfn2UfLt9fl-D2bfUym49EsqxmUMcuNNkQLowkxWlBDDatNw1gJtGiqGijXoiYNTWuidFETyivOhFkraEAXrI8ef20Pvv3qTIhyb0OdDlfOtF2QwIWoKAV2Qh_-oNu2O_0QJM2rvExxMPEfBZzTnFe5oIl6-qVq34bgTSMP3u6VP0og8tSCBHlugf0APWd3Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662469472</pqid></control><display><type>article</type><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><source>Alma/SFX Local Collection</source><creator>Janssens, Frank L. ; van der Ha, Jozef C.</creator><creatorcontrib>Janssens, Frank L. ; van der Ha, Jozef C.</creatorcontrib><description>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000123</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Atomic absorption analysis ; Damping ; Eigenvalues ; Eigenvectors ; Liapunov functions ; Mass-spring systems ; Mathematical analysis ; Mathematical models ; Motion stability ; Parameters ; Satellite configurations ; Satellites ; Spectroscopy ; Spinning ; Spring constant ; Stability ; Thrust</subject><ispartof>Journal of guidance, control, and dynamics, 2015-04, Vol.38 (4), p.761-771</ispartof><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</citedby><cites>FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Janssens, Frank L.</creatorcontrib><creatorcontrib>van der Ha, Jozef C.</creatorcontrib><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><title>Journal of guidance, control, and dynamics</title><description>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</description><subject>Atomic absorption analysis</subject><subject>Damping</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Liapunov functions</subject><subject>Mass-spring systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Motion stability</subject><subject>Parameters</subject><subject>Satellite configurations</subject><subject>Satellites</subject><subject>Spectroscopy</subject><subject>Spinning</subject><subject>Spring constant</subject><subject>Stability</subject><subject>Thrust</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFPAjEQhRujiYge_AdNvGjCYqfdbXePBBVJIB6Ac9MuXSyBLrbdRP69JXLy4GmSN19eZt5D6B7IkBaQP8NwQggByi5QDwrGMlaW-SXqEcEgK0hFrtFNCNuEMA6ih1aLqLTd2XjEbYMXB-ucdRu8UNHskmrwyq2Nx6Nvq3Z4-em7EAd46qLxLglzFQKet9G2boCVW-MXtU8Wm1t01ahdMHfn2UfLt9fl-D2bfUym49EsqxmUMcuNNkQLowkxWlBDDatNw1gJtGiqGijXoiYNTWuidFETyivOhFkraEAXrI8ef20Pvv3qTIhyb0OdDlfOtF2QwIWoKAV2Qh_-oNu2O_0QJM2rvExxMPEfBZzTnFe5oIl6-qVq34bgTSMP3u6VP0og8tSCBHlugf0APWd3Ng</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Janssens, Frank L.</creator><creator>van der Ha, Jozef C.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</title><author>Janssens, Frank L. ; van der Ha, Jozef C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-4ebe0b7eb00eb72e2e3cef338125f9c126b7c0f200e0ab5c0269637eda1f1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic absorption analysis</topic><topic>Damping</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Liapunov functions</topic><topic>Mass-spring systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Motion stability</topic><topic>Parameters</topic><topic>Satellite configurations</topic><topic>Satellites</topic><topic>Spectroscopy</topic><topic>Spinning</topic><topic>Spring constant</topic><topic>Stability</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssens, Frank L.</creatorcontrib><creatorcontrib>van der Ha, Jozef C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssens, Frank L.</au><au>van der Ha, Jozef C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>38</volume><issue>4</issue><spage>761</spage><epage>771</epage><pages>761-771</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>The paper extends and clarifies the stability results for a spinning satellite under axial thrust in the presence of internal damped mass motion. It is known that prolate and oblate satellite configurations can be stabilized by damped mass motion. Here, the stability boundaries are established by exploiting the properties of the complex characteristic equation and the results are interpreted in terms of the physical system parameters. When the thrust level is the only free parameter, both prolate and oblate satellites can be stabilized provided that the thrust is within a specified range. This result is in contrast to the well-known maximum-axis rule for a free spinner where damping is always stabilizing (destabilizing) for an oblate (prolate) satellite. When adding a suitable spring-mass system, the minimum value of the spring constant that stabilizes the configuration can be established. In practice, however, the damping may well be too weak to be effective. Numerical illustrations are presented for the actual parameters of the Ulysses prolate configuration at orbit injection as well as for a fictitious oblate system. Finally, a new derivation of a previously established first integral for the undamped system is offered and its properties as a Lyapunov function are discussed.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000123</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2015-04, Vol.38 (4), p.761-771 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677922135 |
source | Alma/SFX Local Collection |
subjects | Atomic absorption analysis Damping Eigenvalues Eigenvectors Liapunov functions Mass-spring systems Mathematical analysis Mathematical models Motion stability Parameters Satellite configurations Satellites Spectroscopy Spinning Spring constant Stability Thrust |
title | Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Spinning%20Satellite%20Under%20Axial%20Thrust,%20Internal%20Mass%20Motion,%20and%20Damping&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Janssens,%20Frank%20L.&rft.date=2015-04-01&rft.volume=38&rft.issue=4&rft.spage=761&rft.epage=771&rft.pages=761-771&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000123&rft_dat=%3Cproquest_cross%3E1677922135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662469472&rft_id=info:pmid/&rfr_iscdi=true |