3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients
Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2015-04, Vol.17 (2), p.36-8, Article 36 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions
in vivo
, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening. |
---|---|
ISSN: | 1387-2176 1572-8781 |
DOI: | 10.1007/s10544-015-9928-y |