Keyframe-based visual–inertial odometry using nonlinear optimization

Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2015-03, Vol.34 (3), p.314-334
Hauptverfasser: Leutenegger, Stefan, Lynen, Simon, Bosse, Michael, Siegwart, Roland, Furgale, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 314
container_title The International journal of robotics research
container_volume 34
creator Leutenegger, Stefan
Lynen, Simon
Bosse, Michael
Siegwart, Roland
Furgale, Paul
description Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.
doi_str_mv 10.1177/0278364914554813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677921014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364914554813</sage_id><sourcerecordid>1677921014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-b131984ee0b72f788acfc2f504f9a9c71d8c41283d139db2efed2cd6bc85c7fd3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOP7sXRbcuKnmNmmTLEUcFQfc6Lqkyc2QoW3GpBXGle_gG_okdhgXIri6i-87h8sh5AzoJYAQV7QQklVcAS9LLoHtkRkIDjkDUe2T2RbnW35IjlJaUUpZRdWMzB9x46LuMG90Qpu9-TTq9uvj0_cYB6_bLNjQ4RA32Zh8v8z60LcT0zEL68F3_l0PPvQn5MDpNuHpzz0mL_Pb55v7fPF093BzvcgNL-mQN8BASY5IG1E4IaU2zhSupNwprYwAKw2HQjILTNmmQIe2MLZqjCyNcJYdk4td7zqG1xHTUHc-GWxb3WMYUw2VEKoACnxSz_-oqzDGfvquBgVVKRVXdLLozjIxpBTR1evoOx03NdB6O2z9d9gpku8iSS_xV-l__jeBZ3mi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916589490</pqid></control><display><type>article</type><title>Keyframe-based visual–inertial odometry using nonlinear optimization</title><source>SAGE Complete A-Z List</source><creator>Leutenegger, Stefan ; Lynen, Simon ; Bosse, Michael ; Siegwart, Roland ; Furgale, Paul</creator><creatorcontrib>Leutenegger, Stefan ; Lynen, Simon ; Bosse, Michael ; Siegwart, Roland ; Furgale, Paul</creatorcontrib><description>Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364914554813</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accelerometers ; Accuracy ; Algorithms ; Cloning ; Complexity ; Cost function ; Filtering ; Filtration ; Ground truth ; Imagery ; Inertial ; Landmarks ; Nonlinearity ; Odometers ; Optimization ; Position (location) ; Probabilistic methods ; Probability theory ; Real time operation ; Robotics ; Simultaneous localization and mapping ; Visual ; Windows (intervals)</subject><ispartof>The International journal of robotics research, 2015-03, Vol.34 (3), p.314-334</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-b131984ee0b72f788acfc2f504f9a9c71d8c41283d139db2efed2cd6bc85c7fd3</citedby><cites>FETCH-LOGICAL-c450t-b131984ee0b72f788acfc2f504f9a9c71d8c41283d139db2efed2cd6bc85c7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364914554813$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364914554813$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Leutenegger, Stefan</creatorcontrib><creatorcontrib>Lynen, Simon</creatorcontrib><creatorcontrib>Bosse, Michael</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Furgale, Paul</creatorcontrib><title>Keyframe-based visual–inertial odometry using nonlinear optimization</title><title>The International journal of robotics research</title><description>Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cloning</subject><subject>Complexity</subject><subject>Cost function</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Ground truth</subject><subject>Imagery</subject><subject>Inertial</subject><subject>Landmarks</subject><subject>Nonlinearity</subject><subject>Odometers</subject><subject>Optimization</subject><subject>Position (location)</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Real time operation</subject><subject>Robotics</subject><subject>Simultaneous localization and mapping</subject><subject>Visual</subject><subject>Windows (intervals)</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOP7sXRbcuKnmNmmTLEUcFQfc6Lqkyc2QoW3GpBXGle_gG_okdhgXIri6i-87h8sh5AzoJYAQV7QQklVcAS9LLoHtkRkIDjkDUe2T2RbnW35IjlJaUUpZRdWMzB9x46LuMG90Qpu9-TTq9uvj0_cYB6_bLNjQ4RA32Zh8v8z60LcT0zEL68F3_l0PPvQn5MDpNuHpzz0mL_Pb55v7fPF093BzvcgNL-mQN8BASY5IG1E4IaU2zhSupNwprYwAKw2HQjILTNmmQIe2MLZqjCyNcJYdk4td7zqG1xHTUHc-GWxb3WMYUw2VEKoACnxSz_-oqzDGfvquBgVVKRVXdLLozjIxpBTR1evoOx03NdB6O2z9d9gpku8iSS_xV-l__jeBZ3mi</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Leutenegger, Stefan</creator><creator>Lynen, Simon</creator><creator>Bosse, Michael</creator><creator>Siegwart, Roland</creator><creator>Furgale, Paul</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20150301</creationdate><title>Keyframe-based visual–inertial odometry using nonlinear optimization</title><author>Leutenegger, Stefan ; Lynen, Simon ; Bosse, Michael ; Siegwart, Roland ; Furgale, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-b131984ee0b72f788acfc2f504f9a9c71d8c41283d139db2efed2cd6bc85c7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cloning</topic><topic>Complexity</topic><topic>Cost function</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Ground truth</topic><topic>Imagery</topic><topic>Inertial</topic><topic>Landmarks</topic><topic>Nonlinearity</topic><topic>Odometers</topic><topic>Optimization</topic><topic>Position (location)</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Real time operation</topic><topic>Robotics</topic><topic>Simultaneous localization and mapping</topic><topic>Visual</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leutenegger, Stefan</creatorcontrib><creatorcontrib>Lynen, Simon</creatorcontrib><creatorcontrib>Bosse, Michael</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Furgale, Paul</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leutenegger, Stefan</au><au>Lynen, Simon</au><au>Bosse, Michael</au><au>Siegwart, Roland</au><au>Furgale, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keyframe-based visual–inertial odometry using nonlinear optimization</atitle><jtitle>The International journal of robotics research</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>314</spage><epage>334</epage><pages>314-334</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364914554813</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2015-03, Vol.34 (3), p.314-334
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_1677921014
source SAGE Complete A-Z List
subjects Accelerometers
Accuracy
Algorithms
Cloning
Complexity
Cost function
Filtering
Filtration
Ground truth
Imagery
Inertial
Landmarks
Nonlinearity
Odometers
Optimization
Position (location)
Probabilistic methods
Probability theory
Real time operation
Robotics
Simultaneous localization and mapping
Visual
Windows (intervals)
title Keyframe-based visual–inertial odometry using nonlinear optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keyframe-based%20visual%E2%80%93inertial%20odometry%20using%20nonlinear%20optimization&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Leutenegger,%20Stefan&rft.date=2015-03-01&rft.volume=34&rft.issue=3&rft.spage=314&rft.epage=334&rft.pages=314-334&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364914554813&rft_dat=%3Cproquest_cross%3E1677921014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916589490&rft_id=info:pmid/&rft_sage_id=10.1177_0278364914554813&rfr_iscdi=true