Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss

Dipotassium-2,3,9,10,16,17,23,24-octacyanophthalocyanine–potassium (K2Pc(CN)8–K) complex nanograss was fabricated on a single KCl crystal. The process was controlled to achieve monodisperse nanograss with individual rod diameters of 60nm and lengths of 250nm. The gaps between the rods were fully cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2013-03, Vol.531, p.513-518
Hauptverfasser: Saeki, Hiroyuki, Nishimoto, Mihoko, Koshiba, Yasuko, Misaki, Masahiro, Ishida, Kenji, Ueda, Yasukiyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue
container_start_page 513
container_title Thin solid films
container_volume 531
creator Saeki, Hiroyuki
Nishimoto, Mihoko
Koshiba, Yasuko
Misaki, Masahiro
Ishida, Kenji
Ueda, Yasukiyo
description Dipotassium-2,3,9,10,16,17,23,24-octacyanophthalocyanine–potassium (K2Pc(CN)8–K) complex nanograss was fabricated on a single KCl crystal. The process was controlled to achieve monodisperse nanograss with individual rod diameters of 60nm and lengths of 250nm. The gaps between the rods were fully covered with K2Pc(CN)8–K complex grains. The film continuity at the interface between the substrate and the nanograss layer allowed measurement of the field-effect-transistor characteristics of the material. The K2Pc(CN)8–K complex film exhibited n-type conduction characteristics, and the energy of the highest occupied molecular orbital was determined to be 5.8eV. Organic photovoltaic cells containing K2Pc(CN)8–K as an n-type semiconductor were also fabricated, and the power-conversion efficiency of a cell containing vertical-aligned-nanograss was approximately four times larger than that of a nanograss dispersed bulk-heterojunction-type cell. ► Octacyanophthalocyanine nanograss was formed by chemical vapor deposition (CVD). ► The distribution of length of nanograss can be controlled by the temperature in CVD. ► The nanograss showed good n-type semiconductor property in photovoltaic cells.
doi_str_mv 10.1016/j.tsf.2013.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677920637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060901300059X</els_id><sourcerecordid>1677920637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-aa79bd502a539727643545f39e2295ee8861ccc1c5f97e4d1f0a1dc3b5eb3f4c3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoIdu0P6A3Xwq92BlJtrWmpxKaJhDopT30JLTjUaLFK7kabWH_fRU29JjTwON7b2aeEB8ldBLkeL3vCvtOgdQdyA5guhAbuTVTq4yWb8QGoId2hAkuxTvmPQBIpfRG_L51uxzQlZBi4-LcMB0CpjgfsYT42Kw5rZRLIG6Sbw4ppjlwVZia2JbTSs36VJ7ckvDkYohVdTE9Zsf8Xrz1bmH68DKvxK_bbz9v7tqHH9_vb74-tNirsbTOmWk3D6DcoCejzNjroR-8nkipaSDabkeJiBIHPxnqZ-nByRn1bqCd9j3qK_H5nFtP_XMkLvYQGGlZXKR0ZCtHYyYFozYVlWcUc2LO5O2aw8Hlk5Vgn2u0e1trtM81WpC21lg9n17iHaNbfHYRA_83KiO3vdG6cl_OHNVf_wbKljFQRJpDJix2TuGVLf8A4P2Jow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677920637</pqid></control><display><type>article</type><title>Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Saeki, Hiroyuki ; Nishimoto, Mihoko ; Koshiba, Yasuko ; Misaki, Masahiro ; Ishida, Kenji ; Ueda, Yasukiyo</creator><creatorcontrib>Saeki, Hiroyuki ; Nishimoto, Mihoko ; Koshiba, Yasuko ; Misaki, Masahiro ; Ishida, Kenji ; Ueda, Yasukiyo</creatorcontrib><description>Dipotassium-2,3,9,10,16,17,23,24-octacyanophthalocyanine–potassium (K2Pc(CN)8–K) complex nanograss was fabricated on a single KCl crystal. The process was controlled to achieve monodisperse nanograss with individual rod diameters of 60nm and lengths of 250nm. The gaps between the rods were fully covered with K2Pc(CN)8–K complex grains. The film continuity at the interface between the substrate and the nanograss layer allowed measurement of the field-effect-transistor characteristics of the material. The K2Pc(CN)8–K complex film exhibited n-type conduction characteristics, and the energy of the highest occupied molecular orbital was determined to be 5.8eV. Organic photovoltaic cells containing K2Pc(CN)8–K as an n-type semiconductor were also fabricated, and the power-conversion efficiency of a cell containing vertical-aligned-nanograss was approximately four times larger than that of a nanograss dispersed bulk-heterojunction-type cell. ► Octacyanophthalocyanine nanograss was formed by chemical vapor deposition (CVD). ► The distribution of length of nanograss can be controlled by the temperature in CVD. ► The nanograss showed good n-type semiconductor property in photovoltaic cells.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.01.009</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Continuity ; Crystals ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Energy ; Exact sciences and technology ; Molecular orbitals ; N-type semiconductors ; Nanograss ; Nanostructure ; Natural energy ; Octacyanophthalocyanine ; Organic photovoltaic cells ; Organic semiconductor ; Photovoltaic cells ; Photovoltaic conversion ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Surface and interface electron states ; Thin films ; Transistors</subject><ispartof>Thin solid films, 2013-03, Vol.531, p.513-518</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-aa79bd502a539727643545f39e2295ee8861ccc1c5f97e4d1f0a1dc3b5eb3f4c3</citedby><cites>FETCH-LOGICAL-c426t-aa79bd502a539727643545f39e2295ee8861ccc1c5f97e4d1f0a1dc3b5eb3f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004060901300059X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27184733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeki, Hiroyuki</creatorcontrib><creatorcontrib>Nishimoto, Mihoko</creatorcontrib><creatorcontrib>Koshiba, Yasuko</creatorcontrib><creatorcontrib>Misaki, Masahiro</creatorcontrib><creatorcontrib>Ishida, Kenji</creatorcontrib><creatorcontrib>Ueda, Yasukiyo</creatorcontrib><title>Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss</title><title>Thin solid films</title><description>Dipotassium-2,3,9,10,16,17,23,24-octacyanophthalocyanine–potassium (K2Pc(CN)8–K) complex nanograss was fabricated on a single KCl crystal. The process was controlled to achieve monodisperse nanograss with individual rod diameters of 60nm and lengths of 250nm. The gaps between the rods were fully covered with K2Pc(CN)8–K complex grains. The film continuity at the interface between the substrate and the nanograss layer allowed measurement of the field-effect-transistor characteristics of the material. The K2Pc(CN)8–K complex film exhibited n-type conduction characteristics, and the energy of the highest occupied molecular orbital was determined to be 5.8eV. Organic photovoltaic cells containing K2Pc(CN)8–K as an n-type semiconductor were also fabricated, and the power-conversion efficiency of a cell containing vertical-aligned-nanograss was approximately four times larger than that of a nanograss dispersed bulk-heterojunction-type cell. ► Octacyanophthalocyanine nanograss was formed by chemical vapor deposition (CVD). ► The distribution of length of nanograss can be controlled by the temperature in CVD. ► The nanograss showed good n-type semiconductor property in photovoltaic cells.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Continuity</subject><subject>Crystals</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Molecular orbitals</subject><subject>N-type semiconductors</subject><subject>Nanograss</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Octacyanophthalocyanine</subject><subject>Organic photovoltaic cells</subject><subject>Organic semiconductor</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Surface and interface electron states</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoIdu0P6A3Xwq92BlJtrWmpxKaJhDopT30JLTjUaLFK7kabWH_fRU29JjTwON7b2aeEB8ldBLkeL3vCvtOgdQdyA5guhAbuTVTq4yWb8QGoId2hAkuxTvmPQBIpfRG_L51uxzQlZBi4-LcMB0CpjgfsYT42Kw5rZRLIG6Sbw4ppjlwVZia2JbTSs36VJ7ckvDkYohVdTE9Zsf8Xrz1bmH68DKvxK_bbz9v7tqHH9_vb74-tNirsbTOmWk3D6DcoCejzNjroR-8nkipaSDabkeJiBIHPxnqZ-nByRn1bqCd9j3qK_H5nFtP_XMkLvYQGGlZXKR0ZCtHYyYFozYVlWcUc2LO5O2aw8Hlk5Vgn2u0e1trtM81WpC21lg9n17iHaNbfHYRA_83KiO3vdG6cl_OHNVf_wbKljFQRJpDJix2TuGVLf8A4P2Jow</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Saeki, Hiroyuki</creator><creator>Nishimoto, Mihoko</creator><creator>Koshiba, Yasuko</creator><creator>Misaki, Masahiro</creator><creator>Ishida, Kenji</creator><creator>Ueda, Yasukiyo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss</title><author>Saeki, Hiroyuki ; Nishimoto, Mihoko ; Koshiba, Yasuko ; Misaki, Masahiro ; Ishida, Kenji ; Ueda, Yasukiyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-aa79bd502a539727643545f39e2295ee8861ccc1c5f97e4d1f0a1dc3b5eb3f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Continuity</topic><topic>Crystals</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Molecular orbitals</topic><topic>N-type semiconductors</topic><topic>Nanograss</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Octacyanophthalocyanine</topic><topic>Organic photovoltaic cells</topic><topic>Organic semiconductor</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Surface and interface electron states</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeki, Hiroyuki</creatorcontrib><creatorcontrib>Nishimoto, Mihoko</creatorcontrib><creatorcontrib>Koshiba, Yasuko</creatorcontrib><creatorcontrib>Misaki, Masahiro</creatorcontrib><creatorcontrib>Ishida, Kenji</creatorcontrib><creatorcontrib>Ueda, Yasukiyo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeki, Hiroyuki</au><au>Nishimoto, Mihoko</au><au>Koshiba, Yasuko</au><au>Misaki, Masahiro</au><au>Ishida, Kenji</au><au>Ueda, Yasukiyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss</atitle><jtitle>Thin solid films</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>531</volume><spage>513</spage><epage>518</epage><pages>513-518</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Dipotassium-2,3,9,10,16,17,23,24-octacyanophthalocyanine–potassium (K2Pc(CN)8–K) complex nanograss was fabricated on a single KCl crystal. The process was controlled to achieve monodisperse nanograss with individual rod diameters of 60nm and lengths of 250nm. The gaps between the rods were fully covered with K2Pc(CN)8–K complex grains. The film continuity at the interface between the substrate and the nanograss layer allowed measurement of the field-effect-transistor characteristics of the material. The K2Pc(CN)8–K complex film exhibited n-type conduction characteristics, and the energy of the highest occupied molecular orbital was determined to be 5.8eV. Organic photovoltaic cells containing K2Pc(CN)8–K as an n-type semiconductor were also fabricated, and the power-conversion efficiency of a cell containing vertical-aligned-nanograss was approximately four times larger than that of a nanograss dispersed bulk-heterojunction-type cell. ► Octacyanophthalocyanine nanograss was formed by chemical vapor deposition (CVD). ► The distribution of length of nanograss can be controlled by the temperature in CVD. ► The nanograss showed good n-type semiconductor property in photovoltaic cells.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.01.009</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-03, Vol.531, p.513-518
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1677920637
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Continuity
Crystals
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Energy
Exact sciences and technology
Molecular orbitals
N-type semiconductors
Nanograss
Nanostructure
Natural energy
Octacyanophthalocyanine
Organic photovoltaic cells
Organic semiconductor
Photovoltaic cells
Photovoltaic conversion
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Surface and interface electron states
Thin films
Transistors
title Fabrication and semiconducting properties of monodisperse n-type phthalocyanine nanograss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20semiconducting%20properties%20of%20monodisperse%20n-type%20phthalocyanine%20nanograss&rft.jtitle=Thin%20solid%20films&rft.au=Saeki,%20Hiroyuki&rft.date=2013-03-01&rft.volume=531&rft.spage=513&rft.epage=518&rft.pages=513-518&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.01.009&rft_dat=%3Cproquest_cross%3E1677920637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677920637&rft_id=info:pmid/&rft_els_id=S004060901300059X&rfr_iscdi=true