Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports
Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into accoun...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2015-03, Vol.226 (3), p.897-915 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 915 |
---|---|
container_issue | 3 |
container_start_page | 897 |
container_title | Acta mechanica |
container_volume | 226 |
creator | Akbari, M. Kiani, Y. Eslami, M. R. |
description | Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio. |
doi_str_mv | 10.1007/s00707-014-1168-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677919781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452289286</galeid><sourcerecordid>A452289286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVwIJNJPiA7QTbZaKxH67U0JnYCNtk4i6yEWl2akdOvSN2E_L01dBbGYAQlVJxbXNVF6BOjB0apviy1UE0oawhjyhDxBu2YYpYoK_QF2lFKGZFW03fofSmP9cV1w3bo18MJ8uB73K7hd5_GI54iXmCYIftlzUA6mGHsYFzwze09DtOYQqXLCfq-4L9pOWGf27Rkn_9h6I6AyzrPU17KB_Q2-r7Ax__3Hv28-fpw_Y3c_bj9fn11R4LkZiFcmEa10MqGShqZ4K20MSirDPey49Bab0AYBjEYJSzznQid9lQ10TaCarFHX7a5c57-rFAWN6QSqj0_wrQWx5TWllltWEU_v0AfpzWP1V2lpFGNkfRMHTbq6HtwaYxT_V2op4Mh1QVATLV_1UjOjeXV1B6xTRDyVEqG6OachroQx6g7p-O2dFxNx53TcaJq-KYplR2PkJ9ZeVX0BOY7kU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658648501</pqid></control><display><type>article</type><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><source>SpringerLink (Online service)</source><creator>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</creator><creatorcontrib>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</creatorcontrib><description>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-014-1168-3</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Conical shells ; Control ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Functionally gradient materials ; Heat and Mass Transfer ; Materials science ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Numerical analysis ; Power law ; Shells ; Solid Mechanics ; Stability ; Theoretical and Applied Mechanics ; Thermodynamics ; Thickness ratio ; Vibration</subject><ispartof>Acta mechanica, 2015-03, Vol.226 (3), p.897-915</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</citedby><cites>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-014-1168-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-014-1168-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akbari, M.</creatorcontrib><creatorcontrib>Kiani, Y.</creatorcontrib><creatorcontrib>Eslami, M. R.</creatorcontrib><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Conical shells</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Functionally gradient materials</subject><subject>Heat and Mass Transfer</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical analysis</subject><subject>Power law</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamics</subject><subject>Thickness ratio</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctqHDEQRUVwIJNJPiA7QTbZaKxH67U0JnYCNtk4i6yEWl2akdOvSN2E_L01dBbGYAQlVJxbXNVF6BOjB0apviy1UE0oawhjyhDxBu2YYpYoK_QF2lFKGZFW03fofSmP9cV1w3bo18MJ8uB73K7hd5_GI54iXmCYIftlzUA6mGHsYFzwze09DtOYQqXLCfq-4L9pOWGf27Rkn_9h6I6AyzrPU17KB_Q2-r7Ax__3Hv28-fpw_Y3c_bj9fn11R4LkZiFcmEa10MqGShqZ4K20MSirDPey49Bab0AYBjEYJSzznQid9lQ10TaCarFHX7a5c57-rFAWN6QSqj0_wrQWx5TWllltWEU_v0AfpzWP1V2lpFGNkfRMHTbq6HtwaYxT_V2op4Mh1QVATLV_1UjOjeXV1B6xTRDyVEqG6OachroQx6g7p-O2dFxNx53TcaJq-KYplR2PkJ9ZeVX0BOY7kU8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Akbari, M.</creator><creator>Kiani, Y.</creator><creator>Eslami, M. R.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150301</creationdate><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><author>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Conical shells</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Functionally gradient materials</topic><topic>Heat and Mass Transfer</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical analysis</topic><topic>Power law</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamics</topic><topic>Thickness ratio</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, M.</creatorcontrib><creatorcontrib>Kiani, Y.</creatorcontrib><creatorcontrib>Eslami, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, M.</au><au>Kiani, Y.</au><au>Eslami, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>226</volume><issue>3</issue><spage>897</spage><epage>915</epage><pages>897-915</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-014-1168-3</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2015-03, Vol.226 (3), p.897-915 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677919781 |
source | SpringerLink (Online service) |
subjects | Boundary conditions Classical and Continuum Physics Conical shells Control Dynamical Systems Engineering Engineering Thermodynamics Functionally gradient materials Heat and Mass Transfer Materials science Mathematical analysis Mathematical models Mechanical properties Numerical analysis Power law Shells Solid Mechanics Stability Theoretical and Applied Mechanics Thermodynamics Thickness ratio Vibration |
title | Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20buckling%20of%20temperature-dependent%20FGM%20conical%20shells%20with%20arbitrary%20edge%20supports&rft.jtitle=Acta%20mechanica&rft.au=Akbari,%20M.&rft.date=2015-03-01&rft.volume=226&rft.issue=3&rft.spage=897&rft.epage=915&rft.pages=897-915&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-014-1168-3&rft_dat=%3Cgale_proqu%3EA452289286%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658648501&rft_id=info:pmid/&rft_galeid=A452289286&rfr_iscdi=true |