Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports

Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into accoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2015-03, Vol.226 (3), p.897-915
Hauptverfasser: Akbari, M., Kiani, Y., Eslami, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 3
container_start_page 897
container_title Acta mechanica
container_volume 226
creator Akbari, M.
Kiani, Y.
Eslami, M. R.
description Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.
doi_str_mv 10.1007/s00707-014-1168-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677919781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452289286</galeid><sourcerecordid>A452289286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVwIJNJPiA7QTbZaKxH67U0JnYCNtk4i6yEWl2akdOvSN2E_L01dBbGYAQlVJxbXNVF6BOjB0apviy1UE0oawhjyhDxBu2YYpYoK_QF2lFKGZFW03fofSmP9cV1w3bo18MJ8uB73K7hd5_GI54iXmCYIftlzUA6mGHsYFzwze09DtOYQqXLCfq-4L9pOWGf27Rkn_9h6I6AyzrPU17KB_Q2-r7Ax__3Hv28-fpw_Y3c_bj9fn11R4LkZiFcmEa10MqGShqZ4K20MSirDPey49Bab0AYBjEYJSzznQid9lQ10TaCarFHX7a5c57-rFAWN6QSqj0_wrQWx5TWllltWEU_v0AfpzWP1V2lpFGNkfRMHTbq6HtwaYxT_V2op4Mh1QVATLV_1UjOjeXV1B6xTRDyVEqG6OachroQx6g7p-O2dFxNx53TcaJq-KYplR2PkJ9ZeVX0BOY7kU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658648501</pqid></control><display><type>article</type><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><source>SpringerLink (Online service)</source><creator>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</creator><creatorcontrib>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</creatorcontrib><description>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-014-1168-3</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Conical shells ; Control ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Functionally gradient materials ; Heat and Mass Transfer ; Materials science ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Numerical analysis ; Power law ; Shells ; Solid Mechanics ; Stability ; Theoretical and Applied Mechanics ; Thermodynamics ; Thickness ratio ; Vibration</subject><ispartof>Acta mechanica, 2015-03, Vol.226 (3), p.897-915</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</citedby><cites>FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-014-1168-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-014-1168-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akbari, M.</creatorcontrib><creatorcontrib>Kiani, Y.</creatorcontrib><creatorcontrib>Eslami, M. R.</creatorcontrib><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Conical shells</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Functionally gradient materials</subject><subject>Heat and Mass Transfer</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical analysis</subject><subject>Power law</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamics</subject><subject>Thickness ratio</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctqHDEQRUVwIJNJPiA7QTbZaKxH67U0JnYCNtk4i6yEWl2akdOvSN2E_L01dBbGYAQlVJxbXNVF6BOjB0apviy1UE0oawhjyhDxBu2YYpYoK_QF2lFKGZFW03fofSmP9cV1w3bo18MJ8uB73K7hd5_GI54iXmCYIftlzUA6mGHsYFzwze09DtOYQqXLCfq-4L9pOWGf27Rkn_9h6I6AyzrPU17KB_Q2-r7Ax__3Hv28-fpw_Y3c_bj9fn11R4LkZiFcmEa10MqGShqZ4K20MSirDPey49Bab0AYBjEYJSzznQid9lQ10TaCarFHX7a5c57-rFAWN6QSqj0_wrQWx5TWllltWEU_v0AfpzWP1V2lpFGNkfRMHTbq6HtwaYxT_V2op4Mh1QVATLV_1UjOjeXV1B6xTRDyVEqG6OachroQx6g7p-O2dFxNx53TcaJq-KYplR2PkJ9ZeVX0BOY7kU8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Akbari, M.</creator><creator>Kiani, Y.</creator><creator>Eslami, M. R.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150301</creationdate><title>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</title><author>Akbari, M. ; Kiani, Y. ; Eslami, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-23846beb54050f132b59fc69682a5d2eb9a8e381efc86391ad3cd7a064f943073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Conical shells</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Functionally gradient materials</topic><topic>Heat and Mass Transfer</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical analysis</topic><topic>Power law</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamics</topic><topic>Thickness ratio</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, M.</creatorcontrib><creatorcontrib>Kiani, Y.</creatorcontrib><creatorcontrib>Eslami, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, M.</au><au>Kiani, Y.</au><au>Eslami, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>226</volume><issue>3</issue><spage>897</spage><epage>915</epage><pages>897-915</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>Bifurcation behavior of heated conical shell made of a through-the-thickness functionally graded material is investigated in the present research. Properties of the shell are obtained based on a power law form across the thickness. Temperature dependency of the constituents is also taken into account. The heat conduction equation of the shell is solved based on an iterative generalized differential quadrature method (GDQM). General nonlinear equilibrium equations and the associated boundary conditions are obtained using the virtual displacement principle in the Donnell sense. The prebuckling solution of the shell is obtained under the assumption of linear membrane deformations. The stability equations are extracted via the concept of the adjacent equilibrium criterion. A semi-analytical solution employing the GDQM and trigonometric expansion is implemented to solve the stability equations. Numerical results of the present research are compared and validated with the known available data through the open literature. Some parametric studies are conducted to investigate the influences of various involved parameters, such as the cone semi-vertex angle, boundary conditions, power law index of composition rule, length to thickness ratio, and the radius to thickness ratio.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-014-1168-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2015-03, Vol.226 (3), p.897-915
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_1677919781
source SpringerLink (Online service)
subjects Boundary conditions
Classical and Continuum Physics
Conical shells
Control
Dynamical Systems
Engineering
Engineering Thermodynamics
Functionally gradient materials
Heat and Mass Transfer
Materials science
Mathematical analysis
Mathematical models
Mechanical properties
Numerical analysis
Power law
Shells
Solid Mechanics
Stability
Theoretical and Applied Mechanics
Thermodynamics
Thickness ratio
Vibration
title Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20buckling%20of%20temperature-dependent%20FGM%20conical%20shells%20with%20arbitrary%20edge%20supports&rft.jtitle=Acta%20mechanica&rft.au=Akbari,%20M.&rft.date=2015-03-01&rft.volume=226&rft.issue=3&rft.spage=897&rft.epage=915&rft.pages=897-915&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-014-1168-3&rft_dat=%3Cgale_proqu%3EA452289286%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658648501&rft_id=info:pmid/&rft_galeid=A452289286&rfr_iscdi=true