Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources

For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2013-11, Vol.26 (11), p.115003-7
Hauptverfasser: Hato, T, Tsukamoto, A, Adachi, S, Oshikubo, Y, Watanabe, H, Ishikawa, H, Sugisaki, M, Arai, E, Tanabe, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 11
container_start_page 115003
container_title Superconductor science & technology
container_volume 26
creator Hato, T
Tsukamoto, A
Adachi, S
Oshikubo, Y
Watanabe, H
Ishikawa, H
Sugisaki, M
Arai, E
Tanabe, K
description For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.
doi_str_mv 10.1088/0953-2048/26/11/115003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677919275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677919275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</originalsourceid><addsrcrecordid>eNqFkE1rAjEQhkNpodb2L5RcCr1sTbJuPo5F2yoIpajnEOOsruxutsla679vFsVrITAEnnln5kHokZIXSqQcEJWlCSNDOWB8QGl8GSHpFerRlNOEcy6vUe8C3aK7EHaEUCpT1kMwhh8oXVNB3WKX48linsy_ltMxrsymhtZV0ILH4RhaqPChaLd4W2y2OJRwwN60gHPnMfw2pYu_wtVdSFXU4E2JPQS39xbCPbrJTRng4Vz7aPn-thhNktnnx3T0OktsXLVNVlauBFGCZAIyIw2DuCPjyhiZ5RJSusolF2ujhoIA0BUziljgxCq55kPL0j56PuU23n3vIbS6KoKFsjQ1uH3QlAuhqGIiiyg_oda7EDzkuvFFZfxRU6I7r7pTpjtlmnFNqT55jY1P5xkmWFPm3tS2CJduJqRUkqnIsRNXuEbvooc6Xv5f-B-y54d8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677919275</pqid></control><display><type>article</type><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</creator><creatorcontrib>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</creatorcontrib><description>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/0953-2048/26/11/115003</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Battery ; Cables ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Cuprates superconductors (high tc and insulating parent compounds) ; Dewars ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Glasses (including metallic glasses) ; Magnetic fields ; Materials science ; Physics ; Receivers ; Slew rate ; Specific materials ; Superconductivity ; Superconductors</subject><ispartof>Superconductor science &amp; technology, 2013-11, Vol.26 (11), p.115003-7</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</citedby><cites>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-2048/26/11/115003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27889829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hato, T</creatorcontrib><creatorcontrib>Tsukamoto, A</creatorcontrib><creatorcontrib>Adachi, S</creatorcontrib><creatorcontrib>Oshikubo, Y</creatorcontrib><creatorcontrib>Watanabe, H</creatorcontrib><creatorcontrib>Ishikawa, H</creatorcontrib><creatorcontrib>Sugisaki, M</creatorcontrib><creatorcontrib>Arai, E</creatorcontrib><creatorcontrib>Tanabe, K</creatorcontrib><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</description><subject>Battery</subject><subject>Cables</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cuprates superconductors (high tc and insulating parent compounds)</subject><subject>Dewars</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Glasses (including metallic glasses)</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Physics</subject><subject>Receivers</subject><subject>Slew rate</subject><subject>Specific materials</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rAjEQhkNpodb2L5RcCr1sTbJuPo5F2yoIpajnEOOsruxutsla679vFsVrITAEnnln5kHokZIXSqQcEJWlCSNDOWB8QGl8GSHpFerRlNOEcy6vUe8C3aK7EHaEUCpT1kMwhh8oXVNB3WKX48linsy_ltMxrsymhtZV0ILH4RhaqPChaLd4W2y2OJRwwN60gHPnMfw2pYu_wtVdSFXU4E2JPQS39xbCPbrJTRng4Vz7aPn-thhNktnnx3T0OktsXLVNVlauBFGCZAIyIw2DuCPjyhiZ5RJSusolF2ujhoIA0BUziljgxCq55kPL0j56PuU23n3vIbS6KoKFsjQ1uH3QlAuhqGIiiyg_oda7EDzkuvFFZfxRU6I7r7pTpjtlmnFNqT55jY1P5xkmWFPm3tS2CJduJqRUkqnIsRNXuEbvooc6Xv5f-B-y54d8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Hato, T</creator><creator>Tsukamoto, A</creator><creator>Adachi, S</creator><creator>Oshikubo, Y</creator><creator>Watanabe, H</creator><creator>Ishikawa, H</creator><creator>Sugisaki, M</creator><creator>Arai, E</creator><creator>Tanabe, K</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><author>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Battery</topic><topic>Cables</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cuprates superconductors (high tc and insulating parent compounds)</topic><topic>Dewars</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Glasses (including metallic glasses)</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Physics</topic><topic>Receivers</topic><topic>Slew rate</topic><topic>Specific materials</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hato, T</creatorcontrib><creatorcontrib>Tsukamoto, A</creatorcontrib><creatorcontrib>Adachi, S</creatorcontrib><creatorcontrib>Oshikubo, Y</creatorcontrib><creatorcontrib>Watanabe, H</creatorcontrib><creatorcontrib>Ishikawa, H</creatorcontrib><creatorcontrib>Sugisaki, M</creatorcontrib><creatorcontrib>Arai, E</creatorcontrib><creatorcontrib>Tanabe, K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hato, T</au><au>Tsukamoto, A</au><au>Adachi, S</au><au>Oshikubo, Y</au><au>Watanabe, H</au><au>Ishikawa, H</au><au>Sugisaki, M</au><au>Arai, E</au><au>Tanabe, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>26</volume><issue>11</issue><spage>115003</spage><epage>7</epage><pages>115003-7</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-2048/26/11/115003</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2013-11, Vol.26 (11), p.115003-7
issn 0953-2048
1361-6668
language eng
recordid cdi_proquest_miscellaneous_1677919275
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Battery
Cables
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Cuprates superconductors (high tc and insulating parent compounds)
Dewars
Dynamical systems
Dynamics
Exact sciences and technology
Glasses (including metallic glasses)
Magnetic fields
Materials science
Physics
Receivers
Slew rate
Specific materials
Superconductivity
Superconductors
title Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20HTS-SQUID%20magnetometer%20system%20with%20high%20slew%20rate%20for%20exploration%20of%20mineral%20resources&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Hato,%20T&rft.date=2013-11-01&rft.volume=26&rft.issue=11&rft.spage=115003&rft.epage=7&rft.pages=115003-7&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/0953-2048/26/11/115003&rft_dat=%3Cproquest_cross%3E1677919275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677919275&rft_id=info:pmid/&rfr_iscdi=true