Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources
For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field...
Gespeichert in:
Veröffentlicht in: | Superconductor science & technology 2013-11, Vol.26 (11), p.115003-7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 11 |
container_start_page | 115003 |
container_title | Superconductor science & technology |
container_volume | 26 |
creator | Hato, T Tsukamoto, A Adachi, S Oshikubo, Y Watanabe, H Ishikawa, H Sugisaki, M Arai, E Tanabe, K |
description | For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg. |
doi_str_mv | 10.1088/0953-2048/26/11/115003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677919275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677919275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</originalsourceid><addsrcrecordid>eNqFkE1rAjEQhkNpodb2L5RcCr1sTbJuPo5F2yoIpajnEOOsruxutsla679vFsVrITAEnnln5kHokZIXSqQcEJWlCSNDOWB8QGl8GSHpFerRlNOEcy6vUe8C3aK7EHaEUCpT1kMwhh8oXVNB3WKX48linsy_ltMxrsymhtZV0ILH4RhaqPChaLd4W2y2OJRwwN60gHPnMfw2pYu_wtVdSFXU4E2JPQS39xbCPbrJTRng4Vz7aPn-thhNktnnx3T0OktsXLVNVlauBFGCZAIyIw2DuCPjyhiZ5RJSusolF2ujhoIA0BUziljgxCq55kPL0j56PuU23n3vIbS6KoKFsjQ1uH3QlAuhqGIiiyg_oda7EDzkuvFFZfxRU6I7r7pTpjtlmnFNqT55jY1P5xkmWFPm3tS2CJduJqRUkqnIsRNXuEbvooc6Xv5f-B-y54d8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677919275</pqid></control><display><type>article</type><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</creator><creatorcontrib>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</creatorcontrib><description>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/0953-2048/26/11/115003</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Battery ; Cables ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Cuprates superconductors (high tc and insulating parent compounds) ; Dewars ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Glasses (including metallic glasses) ; Magnetic fields ; Materials science ; Physics ; Receivers ; Slew rate ; Specific materials ; Superconductivity ; Superconductors</subject><ispartof>Superconductor science & technology, 2013-11, Vol.26 (11), p.115003-7</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</citedby><cites>FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-2048/26/11/115003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27889829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hato, T</creatorcontrib><creatorcontrib>Tsukamoto, A</creatorcontrib><creatorcontrib>Adachi, S</creatorcontrib><creatorcontrib>Oshikubo, Y</creatorcontrib><creatorcontrib>Watanabe, H</creatorcontrib><creatorcontrib>Ishikawa, H</creatorcontrib><creatorcontrib>Sugisaki, M</creatorcontrib><creatorcontrib>Arai, E</creatorcontrib><creatorcontrib>Tanabe, K</creatorcontrib><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</description><subject>Battery</subject><subject>Cables</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cuprates superconductors (high tc and insulating parent compounds)</subject><subject>Dewars</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Glasses (including metallic glasses)</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Physics</subject><subject>Receivers</subject><subject>Slew rate</subject><subject>Specific materials</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rAjEQhkNpodb2L5RcCr1sTbJuPo5F2yoIpajnEOOsruxutsla679vFsVrITAEnnln5kHokZIXSqQcEJWlCSNDOWB8QGl8GSHpFerRlNOEcy6vUe8C3aK7EHaEUCpT1kMwhh8oXVNB3WKX48linsy_ltMxrsymhtZV0ILH4RhaqPChaLd4W2y2OJRwwN60gHPnMfw2pYu_wtVdSFXU4E2JPQS39xbCPbrJTRng4Vz7aPn-thhNktnnx3T0OktsXLVNVlauBFGCZAIyIw2DuCPjyhiZ5RJSusolF2ujhoIA0BUziljgxCq55kPL0j56PuU23n3vIbS6KoKFsjQ1uH3QlAuhqGIiiyg_oda7EDzkuvFFZfxRU6I7r7pTpjtlmnFNqT55jY1P5xkmWFPm3tS2CJduJqRUkqnIsRNXuEbvooc6Xv5f-B-y54d8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Hato, T</creator><creator>Tsukamoto, A</creator><creator>Adachi, S</creator><creator>Oshikubo, Y</creator><creator>Watanabe, H</creator><creator>Ishikawa, H</creator><creator>Sugisaki, M</creator><creator>Arai, E</creator><creator>Tanabe, K</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</title><author>Hato, T ; Tsukamoto, A ; Adachi, S ; Oshikubo, Y ; Watanabe, H ; Ishikawa, H ; Sugisaki, M ; Arai, E ; Tanabe, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bc8b7097057e5a8a2e832269aa85f8e31bf867da9470ee1b2a90ce60c98d64c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Battery</topic><topic>Cables</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cuprates superconductors (high tc and insulating parent compounds)</topic><topic>Dewars</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Glasses (including metallic glasses)</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Physics</topic><topic>Receivers</topic><topic>Slew rate</topic><topic>Specific materials</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hato, T</creatorcontrib><creatorcontrib>Tsukamoto, A</creatorcontrib><creatorcontrib>Adachi, S</creatorcontrib><creatorcontrib>Oshikubo, Y</creatorcontrib><creatorcontrib>Watanabe, H</creatorcontrib><creatorcontrib>Ishikawa, H</creatorcontrib><creatorcontrib>Sugisaki, M</creatorcontrib><creatorcontrib>Arai, E</creatorcontrib><creatorcontrib>Tanabe, K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hato, T</au><au>Tsukamoto, A</au><au>Adachi, S</au><au>Oshikubo, Y</au><au>Watanabe, H</au><au>Ishikawa, H</au><au>Sugisaki, M</au><au>Arai, E</au><au>Tanabe, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>26</volume><issue>11</issue><spage>115003</spage><epage>7</epage><pages>115003-7</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz−1 2 and 10.5 mT s−1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-2048/26/11/115003</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2013-11, Vol.26 (11), p.115003-7 |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677919275 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Battery Cables Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Cuprates superconductors (high tc and insulating parent compounds) Dewars Dynamical systems Dynamics Exact sciences and technology Glasses (including metallic glasses) Magnetic fields Materials science Physics Receivers Slew rate Specific materials Superconductivity Superconductors |
title | Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20HTS-SQUID%20magnetometer%20system%20with%20high%20slew%20rate%20for%20exploration%20of%20mineral%20resources&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Hato,%20T&rft.date=2013-11-01&rft.volume=26&rft.issue=11&rft.spage=115003&rft.epage=7&rft.pages=115003-7&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/0953-2048/26/11/115003&rft_dat=%3Cproquest_cross%3E1677919275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677919275&rft_id=info:pmid/&rfr_iscdi=true |