Evaluating rater quality and rating difficulty in online annotation activities

Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting 2012, Vol.49 (1), p.1-10
Hauptverfasser: Organisciak, Peter, Efron, Miles, Fenlon, Katrina, Senseney, Megan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting
container_volume 49
creator Organisciak, Peter
Efron, Miles
Fenlon, Katrina
Senseney, Megan
description Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research. In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated. These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.
doi_str_mv 10.1002/meet.14504901166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677918349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677918349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</originalsourceid><addsrcrecordid>eNqFkM9LHDEUx0NR6KLeexzw0svoy-TX5NBDkXUV1CK1LfQSspk3Ejub0SSj7n9vli1ie_EUeN_P5-XxJeQThSMK0ByvEPMR5QK4Bkql_EBmVAioW6Zhh8wAOK9Vq-AjOUjpDgBoK5nSbEau5o92mGz24baKNmOsHiY7-LyubOg2k03Q-b73bhrK1IdqDIMPWPIw5pKPobIu-0efPaZ9stvbIeHB33eP_Did35yc1RffFucnXy9qx0DKGgV2VPWonXJaSc5hKZacNci1cNQ2SuuecaaclNyCYNb1jWgZNp3t6BJ7tkc-b_fex_FhwpTNyieHw2ADjlMyVCqlacu4Lujhf-jdOMVQriuUaJum_N8WCraUi2NKEXtzH_3KxrWhYDYdm03H5k3HRfmyVZ78gOt3eXM5n9_869db36eMz6--jX-MVEwJ8-tqYa5_XreXfPHd_GYv5EWQxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658227648</pqid></control><display><type>article</type><title>Evaluating rater quality and rating difficulty in online annotation activities</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</creator><creatorcontrib>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</creatorcontrib><description>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research. In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated. These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</description><identifier>ISSN: 0044-7870</identifier><identifier>ISSN: 1550-8390</identifier><identifier>EISSN: 1550-8390</identifier><identifier>DOI: 10.1002/meet.14504901166</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Annotations ; Collection ; Digital ; Indicators ; Information retrieval ; Judgments ; Meetings ; Online ; Ratings &amp; rankings ; Tasks</subject><ispartof>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting, 2012, Vol.49 (1), p.1-10</ispartof><rights>Copyright © 2012 by American Society for Information Science and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Organisciak, Peter</creatorcontrib><creatorcontrib>Efron, Miles</creatorcontrib><creatorcontrib>Fenlon, Katrina</creatorcontrib><creatorcontrib>Senseney, Megan</creatorcontrib><title>Evaluating rater quality and rating difficulty in online annotation activities</title><title>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</title><addtitle>Proc. Am. Soc. Info. Sci. Tech</addtitle><description>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research. In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated. These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</description><subject>Annotations</subject><subject>Collection</subject><subject>Digital</subject><subject>Indicators</subject><subject>Information retrieval</subject><subject>Judgments</subject><subject>Meetings</subject><subject>Online</subject><subject>Ratings &amp; rankings</subject><subject>Tasks</subject><issn>0044-7870</issn><issn>1550-8390</issn><issn>1550-8390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LHDEUx0NR6KLeexzw0svoy-TX5NBDkXUV1CK1LfQSspk3Ejub0SSj7n9vli1ie_EUeN_P5-XxJeQThSMK0ByvEPMR5QK4Bkql_EBmVAioW6Zhh8wAOK9Vq-AjOUjpDgBoK5nSbEau5o92mGz24baKNmOsHiY7-LyubOg2k03Q-b73bhrK1IdqDIMPWPIw5pKPobIu-0efPaZ9stvbIeHB33eP_Did35yc1RffFucnXy9qx0DKGgV2VPWonXJaSc5hKZacNci1cNQ2SuuecaaclNyCYNb1jWgZNp3t6BJ7tkc-b_fex_FhwpTNyieHw2ADjlMyVCqlacu4Lujhf-jdOMVQriuUaJum_N8WCraUi2NKEXtzH_3KxrWhYDYdm03H5k3HRfmyVZ78gOt3eXM5n9_869db36eMz6--jX-MVEwJ8-tqYa5_XreXfPHd_GYv5EWQxg</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Organisciak, Peter</creator><creator>Efron, Miles</creator><creator>Fenlon, Katrina</creator><creator>Senseney, Megan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Evaluating rater quality and rating difficulty in online annotation activities</title><author>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annotations</topic><topic>Collection</topic><topic>Digital</topic><topic>Indicators</topic><topic>Information retrieval</topic><topic>Judgments</topic><topic>Meetings</topic><topic>Online</topic><topic>Ratings &amp; rankings</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Organisciak, Peter</creatorcontrib><creatorcontrib>Efron, Miles</creatorcontrib><creatorcontrib>Fenlon, Katrina</creatorcontrib><creatorcontrib>Senseney, Megan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Organisciak, Peter</au><au>Efron, Miles</au><au>Fenlon, Katrina</au><au>Senseney, Megan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating rater quality and rating difficulty in online annotation activities</atitle><jtitle>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</jtitle><addtitle>Proc. Am. Soc. Info. Sci. Tech</addtitle><date>2012</date><risdate>2012</risdate><volume>49</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0044-7870</issn><issn>1550-8390</issn><eissn>1550-8390</eissn><abstract>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research. In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated. These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/meet.14504901166</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-7870
ispartof American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting, 2012, Vol.49 (1), p.1-10
issn 0044-7870
1550-8390
1550-8390
language eng
recordid cdi_proquest_miscellaneous_1677918349
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Annotations
Collection
Digital
Indicators
Information retrieval
Judgments
Meetings
Online
Ratings & rankings
Tasks
title Evaluating rater quality and rating difficulty in online annotation activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20rater%20quality%20and%20rating%20difficulty%20in%20online%20annotation%20activities&rft.jtitle=American%20Society%20for%20Information%20Science%20and%20Technology.%20Meeting.%20Proceedings%20of%20the%20...%20ASIST%20Annual%20Meeting&rft.au=Organisciak,%20Peter&rft.date=2012&rft.volume=49&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0044-7870&rft.eissn=1550-8390&rft_id=info:doi/10.1002/meet.14504901166&rft_dat=%3Cproquest_cross%3E1677918349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658227648&rft_id=info:pmid/&rfr_iscdi=true