Evaluating rater quality and rating difficulty in online annotation activities
Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encode...
Gespeichert in:
Veröffentlicht in: | American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting 2012, Vol.49 (1), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting |
container_volume | 49 |
creator | Organisciak, Peter Efron, Miles Fenlon, Katrina Senseney, Megan |
description | Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research.
In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated.
These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities. |
doi_str_mv | 10.1002/meet.14504901166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677918349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677918349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</originalsourceid><addsrcrecordid>eNqFkM9LHDEUx0NR6KLeexzw0svoy-TX5NBDkXUV1CK1LfQSspk3Ejub0SSj7n9vli1ie_EUeN_P5-XxJeQThSMK0ByvEPMR5QK4Bkql_EBmVAioW6Zhh8wAOK9Vq-AjOUjpDgBoK5nSbEau5o92mGz24baKNmOsHiY7-LyubOg2k03Q-b73bhrK1IdqDIMPWPIw5pKPobIu-0efPaZ9stvbIeHB33eP_Did35yc1RffFucnXy9qx0DKGgV2VPWonXJaSc5hKZacNci1cNQ2SuuecaaclNyCYNb1jWgZNp3t6BJ7tkc-b_fex_FhwpTNyieHw2ADjlMyVCqlacu4Lujhf-jdOMVQriuUaJum_N8WCraUi2NKEXtzH_3KxrWhYDYdm03H5k3HRfmyVZ78gOt3eXM5n9_869db36eMz6--jX-MVEwJ8-tqYa5_XreXfPHd_GYv5EWQxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658227648</pqid></control><display><type>article</type><title>Evaluating rater quality and rating difficulty in online annotation activities</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</creator><creatorcontrib>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</creatorcontrib><description>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research.
In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated.
These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</description><identifier>ISSN: 0044-7870</identifier><identifier>ISSN: 1550-8390</identifier><identifier>EISSN: 1550-8390</identifier><identifier>DOI: 10.1002/meet.14504901166</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Annotations ; Collection ; Digital ; Indicators ; Information retrieval ; Judgments ; Meetings ; Online ; Ratings & rankings ; Tasks</subject><ispartof>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting, 2012, Vol.49 (1), p.1-10</ispartof><rights>Copyright © 2012 by American Society for Information Science and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Organisciak, Peter</creatorcontrib><creatorcontrib>Efron, Miles</creatorcontrib><creatorcontrib>Fenlon, Katrina</creatorcontrib><creatorcontrib>Senseney, Megan</creatorcontrib><title>Evaluating rater quality and rating difficulty in online annotation activities</title><title>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</title><addtitle>Proc. Am. Soc. Info. Sci. Tech</addtitle><description>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research.
In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated.
These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</description><subject>Annotations</subject><subject>Collection</subject><subject>Digital</subject><subject>Indicators</subject><subject>Information retrieval</subject><subject>Judgments</subject><subject>Meetings</subject><subject>Online</subject><subject>Ratings & rankings</subject><subject>Tasks</subject><issn>0044-7870</issn><issn>1550-8390</issn><issn>1550-8390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LHDEUx0NR6KLeexzw0svoy-TX5NBDkXUV1CK1LfQSspk3Ejub0SSj7n9vli1ie_EUeN_P5-XxJeQThSMK0ByvEPMR5QK4Bkql_EBmVAioW6Zhh8wAOK9Vq-AjOUjpDgBoK5nSbEau5o92mGz24baKNmOsHiY7-LyubOg2k03Q-b73bhrK1IdqDIMPWPIw5pKPobIu-0efPaZ9stvbIeHB33eP_Did35yc1RffFucnXy9qx0DKGgV2VPWonXJaSc5hKZacNci1cNQ2SuuecaaclNyCYNb1jWgZNp3t6BJ7tkc-b_fex_FhwpTNyieHw2ADjlMyVCqlacu4Lujhf-jdOMVQriuUaJum_N8WCraUi2NKEXtzH_3KxrWhYDYdm03H5k3HRfmyVZ78gOt3eXM5n9_869db36eMz6--jX-MVEwJ8-tqYa5_XreXfPHd_GYv5EWQxg</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Organisciak, Peter</creator><creator>Efron, Miles</creator><creator>Fenlon, Katrina</creator><creator>Senseney, Megan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Evaluating rater quality and rating difficulty in online annotation activities</title><author>Organisciak, Peter ; Efron, Miles ; Fenlon, Katrina ; Senseney, Megan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3066-e5ed17fe9c7c976440b5b432e495c1a2799f3437c664a053acf2583e2dad1bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annotations</topic><topic>Collection</topic><topic>Digital</topic><topic>Indicators</topic><topic>Information retrieval</topic><topic>Judgments</topic><topic>Meetings</topic><topic>Online</topic><topic>Ratings & rankings</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Organisciak, Peter</creatorcontrib><creatorcontrib>Efron, Miles</creatorcontrib><creatorcontrib>Fenlon, Katrina</creatorcontrib><creatorcontrib>Senseney, Megan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Organisciak, Peter</au><au>Efron, Miles</au><au>Fenlon, Katrina</au><au>Senseney, Megan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating rater quality and rating difficulty in online annotation activities</atitle><jtitle>American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting</jtitle><addtitle>Proc. Am. Soc. Info. Sci. Tech</addtitle><date>2012</date><risdate>2012</risdate><volume>49</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0044-7870</issn><issn>1550-8390</issn><eissn>1550-8390</eissn><abstract>Gathering annotations from non‐expert online raters is an attractive method for quickly completing large‐scale annotation tasks, but the increased possibility of unreliable annotators and diminished work quality remains a cause for concern. In the context of information retrieval, where human‐encoded relevance judgments underlie the evaluation of new systems and methods, the ability to quickly and reliably collect trustworthy annotations allows for quicker development and iteration of research.
In the context of paid online workers, this study evaluates indicators of non‐expert performance along three lines: temporality, experience, and agreement. It is found that user performance is a key indicator for future performance. Additionally, the time spent by raters familiarizing themselves with a new set of tasks is important for rater quality, as is long‐term familiarity with a topic being rated.
These findings may inform large‐scale digital collections' use of non‐expert raters for performing more purposive and affordable online annotation activities.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/meet.14504901166</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-7870 |
ispartof | American Society for Information Science and Technology. Meeting. Proceedings of the ... ASIST Annual Meeting, 2012, Vol.49 (1), p.1-10 |
issn | 0044-7870 1550-8390 1550-8390 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677918349 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Annotations Collection Digital Indicators Information retrieval Judgments Meetings Online Ratings & rankings Tasks |
title | Evaluating rater quality and rating difficulty in online annotation activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20rater%20quality%20and%20rating%20difficulty%20in%20online%20annotation%20activities&rft.jtitle=American%20Society%20for%20Information%20Science%20and%20Technology.%20Meeting.%20Proceedings%20of%20the%20...%20ASIST%20Annual%20Meeting&rft.au=Organisciak,%20Peter&rft.date=2012&rft.volume=49&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0044-7870&rft.eissn=1550-8390&rft_id=info:doi/10.1002/meet.14504901166&rft_dat=%3Cproquest_cross%3E1677918349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658227648&rft_id=info:pmid/&rfr_iscdi=true |