Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses

Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2015-03, Vol.412, p.58-65
Hauptverfasser: Seo, Myung-Duk, Shi, Cheng-Bin, Wang, Hui, Cho, Jung-Wook, Kim, Seon-Hyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue
container_start_page 58
container_title Journal of non-crystalline solids
container_volume 412
creator Seo, Myung-Duk
Shi, Cheng-Bin
Wang, Hui
Cho, Jung-Wook
Kim, Seon-Hyo
description Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization. •Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.
doi_str_mv 10.1016/j.jnoncrysol.2015.01.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677917748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309315000113</els_id><sourcerecordid>1677917748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</originalsourceid><addsrcrecordid>eNqFkL1uGzEQhIkgBqLYfgeWae68JHX8KW0htgMIUeG4JnjknkOBOirkKYBT-R38hn4Sn6AAKbPNFDszwHyEUAYtAyavtu12zKMvzzWnlgPrWmAtgP5AFkwr0Sw14x_JAoDzRoARn8jnWrcwnxJ6QR6-57GJNU8_sexcojtMEz22TS6l-MdNMY80D9Qf6j6GOCKNI125zdvL60Pc8FlW7pbT3lUM9Cm5WrFekLPBpYqXf_WcPN5-_bG6b9abu2-r63Xjl0xNjdMgTc-F6YzpsUOhQvBShzAMghvJl_MTOBgmpQPRsd4ziR5Cr0w3SI3inHw59e5L_nXAOtldrB5TciPmQ7VMKmWYUks9W_XJ6kuuteBg9yXuXHm2DOyRo93afxztkaMFZmeOc_TmFMV5yu-IxVYfcfQYYkE_2ZDj_0veAdRugy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677917748</pqid></control><display><type>article</type><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><source>Access via ScienceDirect (Elsevier)</source><creator>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</creator><creatorcontrib>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</creatorcontrib><description>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization. •Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2015.01.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Activation energy ; Avrami exponent ; Constants ; Crystallization ; Cuspidine ; Degree of crystallinity ; Effective activation energy ; Glass ; Melts (crystal growth) ; Mold flux ; Mold fluxes ; Non-isothermal crystallization ; Nucleation ; Supercooling</subject><ispartof>Journal of non-crystalline solids, 2015-03, Vol.412, p.58-65</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</citedby><cites>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</cites><orcidid>0000-0003-2364-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2015.01.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Seo, Myung-Duk</creatorcontrib><creatorcontrib>Shi, Cheng-Bin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cho, Jung-Wook</creatorcontrib><creatorcontrib>Kim, Seon-Hyo</creatorcontrib><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><title>Journal of non-crystalline solids</title><description>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization. •Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</description><subject>Activation energy</subject><subject>Avrami exponent</subject><subject>Constants</subject><subject>Crystallization</subject><subject>Cuspidine</subject><subject>Degree of crystallinity</subject><subject>Effective activation energy</subject><subject>Glass</subject><subject>Melts (crystal growth)</subject><subject>Mold flux</subject><subject>Mold fluxes</subject><subject>Non-isothermal crystallization</subject><subject>Nucleation</subject><subject>Supercooling</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkL1uGzEQhIkgBqLYfgeWae68JHX8KW0htgMIUeG4JnjknkOBOirkKYBT-R38hn4Sn6AAKbPNFDszwHyEUAYtAyavtu12zKMvzzWnlgPrWmAtgP5AFkwr0Sw14x_JAoDzRoARn8jnWrcwnxJ6QR6-57GJNU8_sexcojtMEz22TS6l-MdNMY80D9Qf6j6GOCKNI125zdvL60Pc8FlW7pbT3lUM9Cm5WrFekLPBpYqXf_WcPN5-_bG6b9abu2-r63Xjl0xNjdMgTc-F6YzpsUOhQvBShzAMghvJl_MTOBgmpQPRsd4ziR5Cr0w3SI3inHw59e5L_nXAOtldrB5TciPmQ7VMKmWYUks9W_XJ6kuuteBg9yXuXHm2DOyRo93afxztkaMFZmeOc_TmFMV5yu-IxVYfcfQYYkE_2ZDj_0veAdRugy0</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Seo, Myung-Duk</creator><creator>Shi, Cheng-Bin</creator><creator>Wang, Hui</creator><creator>Cho, Jung-Wook</creator><creator>Kim, Seon-Hyo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2364-1938</orcidid></search><sort><creationdate>20150315</creationdate><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><author>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation energy</topic><topic>Avrami exponent</topic><topic>Constants</topic><topic>Crystallization</topic><topic>Cuspidine</topic><topic>Degree of crystallinity</topic><topic>Effective activation energy</topic><topic>Glass</topic><topic>Melts (crystal growth)</topic><topic>Mold flux</topic><topic>Mold fluxes</topic><topic>Non-isothermal crystallization</topic><topic>Nucleation</topic><topic>Supercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Myung-Duk</creatorcontrib><creatorcontrib>Shi, Cheng-Bin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cho, Jung-Wook</creatorcontrib><creatorcontrib>Kim, Seon-Hyo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Myung-Duk</au><au>Shi, Cheng-Bin</au><au>Wang, Hui</au><au>Cho, Jung-Wook</au><au>Kim, Seon-Hyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2015-03-15</date><risdate>2015</risdate><volume>412</volume><spage>58</spage><epage>65</epage><pages>58-65</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><abstract>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization. •Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2015.01.008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2364-1938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2015-03, Vol.412, p.58-65
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_1677917748
source Access via ScienceDirect (Elsevier)
subjects Activation energy
Avrami exponent
Constants
Crystallization
Cuspidine
Degree of crystallinity
Effective activation energy
Glass
Melts (crystal growth)
Mold flux
Mold fluxes
Non-isothermal crystallization
Nucleation
Supercooling
title Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20melt%20crystallization%20of%20cuspidine%20in%20CaO%E2%80%93SiO2%E2%80%93CaF2%20based%20glasses&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Seo,%20Myung-Duk&rft.date=2015-03-15&rft.volume=412&rft.spage=58&rft.epage=65&rft.pages=58-65&rft.issn=0022-3093&rft.eissn=1873-4812&rft_id=info:doi/10.1016/j.jnoncrysol.2015.01.008&rft_dat=%3Cproquest_cross%3E1677917748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677917748&rft_id=info:pmid/&rft_els_id=S0022309315000113&rfr_iscdi=true