Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses
Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable t...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2015-03, Vol.412, p.58-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | |
container_start_page | 58 |
container_title | Journal of non-crystalline solids |
container_volume | 412 |
creator | Seo, Myung-Duk Shi, Cheng-Bin Wang, Hui Cho, Jung-Wook Kim, Seon-Hyo |
description | Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization.
•Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling. |
doi_str_mv | 10.1016/j.jnoncrysol.2015.01.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677917748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309315000113</els_id><sourcerecordid>1677917748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</originalsourceid><addsrcrecordid>eNqFkL1uGzEQhIkgBqLYfgeWae68JHX8KW0htgMIUeG4JnjknkOBOirkKYBT-R38hn4Sn6AAKbPNFDszwHyEUAYtAyavtu12zKMvzzWnlgPrWmAtgP5AFkwr0Sw14x_JAoDzRoARn8jnWrcwnxJ6QR6-57GJNU8_sexcojtMEz22TS6l-MdNMY80D9Qf6j6GOCKNI125zdvL60Pc8FlW7pbT3lUM9Cm5WrFekLPBpYqXf_WcPN5-_bG6b9abu2-r63Xjl0xNjdMgTc-F6YzpsUOhQvBShzAMghvJl_MTOBgmpQPRsd4ziR5Cr0w3SI3inHw59e5L_nXAOtldrB5TciPmQ7VMKmWYUks9W_XJ6kuuteBg9yXuXHm2DOyRo93afxztkaMFZmeOc_TmFMV5yu-IxVYfcfQYYkE_2ZDj_0veAdRugy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677917748</pqid></control><display><type>article</type><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><source>Access via ScienceDirect (Elsevier)</source><creator>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</creator><creatorcontrib>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</creatorcontrib><description>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization.
•Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2015.01.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Activation energy ; Avrami exponent ; Constants ; Crystallization ; Cuspidine ; Degree of crystallinity ; Effective activation energy ; Glass ; Melts (crystal growth) ; Mold flux ; Mold fluxes ; Non-isothermal crystallization ; Nucleation ; Supercooling</subject><ispartof>Journal of non-crystalline solids, 2015-03, Vol.412, p.58-65</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</citedby><cites>FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</cites><orcidid>0000-0003-2364-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2015.01.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Seo, Myung-Duk</creatorcontrib><creatorcontrib>Shi, Cheng-Bin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cho, Jung-Wook</creatorcontrib><creatorcontrib>Kim, Seon-Hyo</creatorcontrib><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><title>Journal of non-crystalline solids</title><description>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization.
•Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</description><subject>Activation energy</subject><subject>Avrami exponent</subject><subject>Constants</subject><subject>Crystallization</subject><subject>Cuspidine</subject><subject>Degree of crystallinity</subject><subject>Effective activation energy</subject><subject>Glass</subject><subject>Melts (crystal growth)</subject><subject>Mold flux</subject><subject>Mold fluxes</subject><subject>Non-isothermal crystallization</subject><subject>Nucleation</subject><subject>Supercooling</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkL1uGzEQhIkgBqLYfgeWae68JHX8KW0htgMIUeG4JnjknkOBOirkKYBT-R38hn4Sn6AAKbPNFDszwHyEUAYtAyavtu12zKMvzzWnlgPrWmAtgP5AFkwr0Sw14x_JAoDzRoARn8jnWrcwnxJ6QR6-57GJNU8_sexcojtMEz22TS6l-MdNMY80D9Qf6j6GOCKNI125zdvL60Pc8FlW7pbT3lUM9Cm5WrFekLPBpYqXf_WcPN5-_bG6b9abu2-r63Xjl0xNjdMgTc-F6YzpsUOhQvBShzAMghvJl_MTOBgmpQPRsd4ziR5Cr0w3SI3inHw59e5L_nXAOtldrB5TciPmQ7VMKmWYUks9W_XJ6kuuteBg9yXuXHm2DOyRo93afxztkaMFZmeOc_TmFMV5yu-IxVYfcfQYYkE_2ZDj_0veAdRugy0</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Seo, Myung-Duk</creator><creator>Shi, Cheng-Bin</creator><creator>Wang, Hui</creator><creator>Cho, Jung-Wook</creator><creator>Kim, Seon-Hyo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2364-1938</orcidid></search><sort><creationdate>20150315</creationdate><title>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</title><author>Seo, Myung-Duk ; Shi, Cheng-Bin ; Wang, Hui ; Cho, Jung-Wook ; Kim, Seon-Hyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-a8069b239599be5e37ddc68ddff3296249b20209166a0351bc16ec0db795f68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation energy</topic><topic>Avrami exponent</topic><topic>Constants</topic><topic>Crystallization</topic><topic>Cuspidine</topic><topic>Degree of crystallinity</topic><topic>Effective activation energy</topic><topic>Glass</topic><topic>Melts (crystal growth)</topic><topic>Mold flux</topic><topic>Mold fluxes</topic><topic>Non-isothermal crystallization</topic><topic>Nucleation</topic><topic>Supercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Myung-Duk</creatorcontrib><creatorcontrib>Shi, Cheng-Bin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cho, Jung-Wook</creatorcontrib><creatorcontrib>Kim, Seon-Hyo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Myung-Duk</au><au>Shi, Cheng-Bin</au><au>Wang, Hui</au><au>Cho, Jung-Wook</au><au>Kim, Seon-Hyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2015-03-15</date><risdate>2015</risdate><volume>412</volume><spage>58</spage><epage>65</epage><pages>58-65</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><abstract>Non-isothermal crystallization kinetics of cuspidine (Ca4Si2O7F2) in CaO–SiO2–CaF2 based glass system has been investigated using a DSC to understand and improve the performances of mold fluxes applied to commercial continuous casting of steels. It was found that the Ozawa analysis is not suitable to depict non-isothermal melt crystallization of glasses. Instead, the effective activation energy for non-isothermal crystallization was estimated using differential iso-conversional method of Friedman analysis. The effective activation energy of cuspidine formation for the glasses examined showed negative sign, from −241 to −652kJ/mol. It remains constant over the range from 0.1 to 0.4 of the degree of crystallinity, whereas it increases as the degree of crystallinity exceeds 0.4. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the glasses investigated, which means that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The crystalline morphology of cuspidine observed by SEM and a SHTT also supported the anti-Arrhenius kinetics during non-isothermal melt crystallization.
•Non-isothermal melt crystallization kinetics of cuspidine were investigated.•Ozawa analysis is inappropriate to evaluate melt crystallization kinetics.•Cuspidine crystallization is nucleation-controlled with negative activation energy.•Morphology of cuspidine is faceted or dendritic depending on the undercooling.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2015.01.008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2364-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2015-03, Vol.412, p.58-65 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677917748 |
source | Access via ScienceDirect (Elsevier) |
subjects | Activation energy Avrami exponent Constants Crystallization Cuspidine Degree of crystallinity Effective activation energy Glass Melts (crystal growth) Mold flux Mold fluxes Non-isothermal crystallization Nucleation Supercooling |
title | Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20melt%20crystallization%20of%20cuspidine%20in%20CaO%E2%80%93SiO2%E2%80%93CaF2%20based%20glasses&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Seo,%20Myung-Duk&rft.date=2015-03-15&rft.volume=412&rft.spage=58&rft.epage=65&rft.pages=58-65&rft.issn=0022-3093&rft.eissn=1873-4812&rft_id=info:doi/10.1016/j.jnoncrysol.2015.01.008&rft_dat=%3Cproquest_cross%3E1677917748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677917748&rft_id=info:pmid/&rft_els_id=S0022309315000113&rfr_iscdi=true |