Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities
In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2011-08, Vol.27 (8), p.085001-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 8 |
container_start_page | 085001 |
container_title | Inverse problems |
container_volume | 27 |
creator | Flemming, Jens Hofmann, Bernd |
description | In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances. |
doi_str_mv | 10.1088/0266-5611/27/8/085001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677917139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677917139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVooW6an1DQpdBDN5a0u5LcWzHNBwRySc5iLI0SpRvJkXYNzS3_PLIdfGnJSYzmeWaGl5CvnJ1ypvWcCSmbXnI-F2peS90zxo_IjLeSN7IT7AOZHZhP5HMpDxXgmqsZeVmmuMF8h9EizTBioSFSm2IZM4SIjt6EP_cppg3NeDcNkMMzjCHFnxSfprCBYWcmT9c5PaAdq1HSlOtfHeLCFi0UoqObqu5MGOqKKsNQu1i-kI8ehoInb-8xuT37fbO8aK6uzy-Xv64a2y66sfFeMO-kazkKK1eaSY3OSeikaGVvXad6EJpXtl_phWYLL7BrRdtLx0CtVHtMvu_n1kOfJiyjeQzF4jBAxDQVw6VSC67qhIr2e9TmVEpGb9Y5PEL-azgz28jNNk6zjdMIZWq5i7x6395WQLEw-AzRhnKQRdcJpQSr3I89F9L60P3vSLN2vuLsX_z9S14BhEKfyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677917139</pqid></control><display><type>article</type><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Flemming, Jens ; Hofmann, Bernd</creator><creatorcontrib>Flemming, Jens ; Hofmann, Bernd</creatorcontrib><description>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/0266-5611/27/8/085001</identifier><identifier>CODEN: INVPET</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Banach space ; Constraints ; Convergence ; Equivalence ; Exact sciences and technology ; Inequalities ; Inverse problems ; Nonlinearity ; Physics ; Regularization ; Smoothness</subject><ispartof>Inverse problems, 2011-08, Vol.27 (8), p.085001-11</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</citedby><cites>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0266-5611/27/8/085001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53808,53888</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427720$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Flemming, Jens</creatorcontrib><creatorcontrib>Hofmann, Bernd</creatorcontrib><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><title>Inverse problems</title><description>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</description><subject>Banach space</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Inequalities</subject><subject>Inverse problems</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Regularization</subject><subject>Smoothness</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVooW6an1DQpdBDN5a0u5LcWzHNBwRySc5iLI0SpRvJkXYNzS3_PLIdfGnJSYzmeWaGl5CvnJ1ypvWcCSmbXnI-F2peS90zxo_IjLeSN7IT7AOZHZhP5HMpDxXgmqsZeVmmuMF8h9EizTBioSFSm2IZM4SIjt6EP_cppg3NeDcNkMMzjCHFnxSfprCBYWcmT9c5PaAdq1HSlOtfHeLCFi0UoqObqu5MGOqKKsNQu1i-kI8ehoInb-8xuT37fbO8aK6uzy-Xv64a2y66sfFeMO-kazkKK1eaSY3OSeikaGVvXad6EJpXtl_phWYLL7BrRdtLx0CtVHtMvu_n1kOfJiyjeQzF4jBAxDQVw6VSC67qhIr2e9TmVEpGb9Y5PEL-azgz28jNNk6zjdMIZWq5i7x6395WQLEw-AzRhnKQRdcJpQSr3I89F9L60P3vSLN2vuLsX_z9S14BhEKfyQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Flemming, Jens</creator><creator>Hofmann, Bernd</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><author>Flemming, Jens ; Hofmann, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Banach space</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Inequalities</topic><topic>Inverse problems</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Regularization</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flemming, Jens</creatorcontrib><creatorcontrib>Hofmann, Bernd</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flemming, Jens</au><au>Hofmann, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</atitle><jtitle>Inverse problems</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>27</volume><issue>8</issue><spage>085001</spage><epage>11</epage><pages>085001-11</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INVPET</coden><abstract>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0266-5611/27/8/085001</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2011-08, Vol.27 (8), p.085001-11 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677917139 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Banach space Constraints Convergence Equivalence Exact sciences and technology Inequalities Inverse problems Nonlinearity Physics Regularization Smoothness |
title | Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20rates%20in%20constrained%20Tikhonov%20regularization:%20equivalence%20of%20projected%20source%20conditions%20and%20variational%20inequalities&rft.jtitle=Inverse%20problems&rft.au=Flemming,%20Jens&rft.date=2011-08-01&rft.volume=27&rft.issue=8&rft.spage=085001&rft.epage=11&rft.pages=085001-11&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INVPET&rft_id=info:doi/10.1088/0266-5611/27/8/085001&rft_dat=%3Cproquest_iop_p%3E1677917139%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677917139&rft_id=info:pmid/&rfr_iscdi=true |