Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities

In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2011-08, Vol.27 (8), p.085001-11
Hauptverfasser: Flemming, Jens, Hofmann, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 8
container_start_page 085001
container_title Inverse problems
container_volume 27
creator Flemming, Jens
Hofmann, Bernd
description In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.
doi_str_mv 10.1088/0266-5611/27/8/085001
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677917139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677917139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVooW6an1DQpdBDN5a0u5LcWzHNBwRySc5iLI0SpRvJkXYNzS3_PLIdfGnJSYzmeWaGl5CvnJ1ypvWcCSmbXnI-F2peS90zxo_IjLeSN7IT7AOZHZhP5HMpDxXgmqsZeVmmuMF8h9EizTBioSFSm2IZM4SIjt6EP_cppg3NeDcNkMMzjCHFnxSfprCBYWcmT9c5PaAdq1HSlOtfHeLCFi0UoqObqu5MGOqKKsNQu1i-kI8ehoInb-8xuT37fbO8aK6uzy-Xv64a2y66sfFeMO-kazkKK1eaSY3OSeikaGVvXad6EJpXtl_phWYLL7BrRdtLx0CtVHtMvu_n1kOfJiyjeQzF4jBAxDQVw6VSC67qhIr2e9TmVEpGb9Y5PEL-azgz28jNNk6zjdMIZWq5i7x6395WQLEw-AzRhnKQRdcJpQSr3I89F9L60P3vSLN2vuLsX_z9S14BhEKfyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677917139</pqid></control><display><type>article</type><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Flemming, Jens ; Hofmann, Bernd</creator><creatorcontrib>Flemming, Jens ; Hofmann, Bernd</creatorcontrib><description>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/0266-5611/27/8/085001</identifier><identifier>CODEN: INVPET</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Banach space ; Constraints ; Convergence ; Equivalence ; Exact sciences and technology ; Inequalities ; Inverse problems ; Nonlinearity ; Physics ; Regularization ; Smoothness</subject><ispartof>Inverse problems, 2011-08, Vol.27 (8), p.085001-11</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</citedby><cites>FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0266-5611/27/8/085001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53808,53888</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24427720$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Flemming, Jens</creatorcontrib><creatorcontrib>Hofmann, Bernd</creatorcontrib><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><title>Inverse problems</title><description>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</description><subject>Banach space</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Inequalities</subject><subject>Inverse problems</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Regularization</subject><subject>Smoothness</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVooW6an1DQpdBDN5a0u5LcWzHNBwRySc5iLI0SpRvJkXYNzS3_PLIdfGnJSYzmeWaGl5CvnJ1ypvWcCSmbXnI-F2peS90zxo_IjLeSN7IT7AOZHZhP5HMpDxXgmqsZeVmmuMF8h9EizTBioSFSm2IZM4SIjt6EP_cppg3NeDcNkMMzjCHFnxSfprCBYWcmT9c5PaAdq1HSlOtfHeLCFi0UoqObqu5MGOqKKsNQu1i-kI8ehoInb-8xuT37fbO8aK6uzy-Xv64a2y66sfFeMO-kazkKK1eaSY3OSeikaGVvXad6EJpXtl_phWYLL7BrRdtLx0CtVHtMvu_n1kOfJiyjeQzF4jBAxDQVw6VSC67qhIr2e9TmVEpGb9Y5PEL-azgz28jNNk6zjdMIZWq5i7x6395WQLEw-AzRhnKQRdcJpQSr3I89F9L60P3vSLN2vuLsX_z9S14BhEKfyQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Flemming, Jens</creator><creator>Hofmann, Bernd</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</title><author>Flemming, Jens ; Hofmann, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ff20fd6d31e2c6b8068edd6a462365cd475a2813945b89809f2e432356d0a7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Banach space</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Inequalities</topic><topic>Inverse problems</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Regularization</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flemming, Jens</creatorcontrib><creatorcontrib>Hofmann, Bernd</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flemming, Jens</au><au>Hofmann, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities</atitle><jtitle>Inverse problems</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>27</volume><issue>8</issue><spage>085001</spage><epage>11</epage><pages>085001-11</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INVPET</coden><abstract>In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0266-5611/27/8/085001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2011-08, Vol.27 (8), p.085001-11
issn 0266-5611
1361-6420
language eng
recordid cdi_proquest_miscellaneous_1677917139
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Banach space
Constraints
Convergence
Equivalence
Exact sciences and technology
Inequalities
Inverse problems
Nonlinearity
Physics
Regularization
Smoothness
title Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20rates%20in%20constrained%20Tikhonov%20regularization:%20equivalence%20of%20projected%20source%20conditions%20and%20variational%20inequalities&rft.jtitle=Inverse%20problems&rft.au=Flemming,%20Jens&rft.date=2011-08-01&rft.volume=27&rft.issue=8&rft.spage=085001&rft.epage=11&rft.pages=085001-11&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INVPET&rft_id=info:doi/10.1088/0266-5611/27/8/085001&rft_dat=%3Cproquest_iop_p%3E1677917139%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677917139&rft_id=info:pmid/&rfr_iscdi=true