Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation

Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology. In this paper, we are con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-12, Vol.56 (12), p.2615-2630
Hauptverfasser: Huang, YunQing, Su, YiFan, Wei, HuaYi, Yi, NianYu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2630
container_issue 12
container_start_page 2615
container_title Science China. Mathematics
container_volume 56
creator Huang, YunQing
Su, YiFan
Wei, HuaYi
Yi, NianYu
description Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology. In this paper, we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems. We provide an algorithm to generate anisotropic meshes under the given metric tensor. We show that the inverse of the anisotropic diffusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects: better discrete algebraic systems, more accurate finite element solution and superconvergence on the mesh nodes. Various numerical examples demonstrating the effectiveness are presented.
doi_str_mv 10.1007/s11425-013-4728-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677916371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566856610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-334d0b9db1a43bac89f896fd74181a66a1f0f51aeb16ecc2f5481e51836eeca83</originalsourceid><addsrcrecordid>eNqNkT1vwyAQhq2qlRql-QHdPHah5QwGPEZRv6RIXdKuCGNIHCXggD303xfXlbq1QQKO43lPp3uz7BbwPWDMHyIALUqEgSDKC4HoRTYDwSqUjuIyxYxTlD7IdbaIcY_TIhWmnMwyu3Rt9H3wXavzo4m7fGucCapvvUvvfuebmNcqmiZPieXqY5Mr1-RO9UNQh5EISWh9SOnfQuZwaLt-DE7Dd6mb7MqqQzSLn3uevT89blYvaP32_LparpGmBe4RIbTBddXUoCiplRaVFRWzDacgQDGmwGJbgjI1MKN1YUsqwJQgCDNGK0Hm2d1Utwv-NJjYy2MbdWpHOeOHKNMkeAWMcDgHhZLjktP_0ZIxkTbgM9AScEVZQRIKE6qDjzEYK7vQHlX4lIDl6KucfJXJVzn6KsdOikkTE-u2Jsi9H4JLI_1D9AV96aU5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551094623</pqid></control><display><type>article</type><title>Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Huang, YunQing ; Su, YiFan ; Wei, HuaYi ; Yi, NianYu</creator><creatorcontrib>Huang, YunQing ; Su, YiFan ; Wei, HuaYi ; Yi, NianYu</creatorcontrib><description>Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology. In this paper, we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems. We provide an algorithm to generate anisotropic meshes under the given metric tensor. We show that the inverse of the anisotropic diffusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects: better discrete algebraic systems, more accurate finite element solution and superconvergence on the mesh nodes. Various numerical examples demonstrating the effectiveness are presented.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-013-4728-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Anisotropy ; Applications of Mathematics ; Finite element method ; Inverse ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mesh generation ; Tensors</subject><ispartof>Science China. Mathematics, 2013-12, Vol.56 (12), p.2615-2630</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-334d0b9db1a43bac89f896fd74181a66a1f0f51aeb16ecc2f5481e51836eeca83</citedby><cites>FETCH-LOGICAL-c420t-334d0b9db1a43bac89f896fd74181a66a1f0f51aeb16ecc2f5481e51836eeca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-013-4728-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-013-4728-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, YunQing</creatorcontrib><creatorcontrib>Su, YiFan</creatorcontrib><creatorcontrib>Wei, HuaYi</creatorcontrib><creatorcontrib>Yi, NianYu</creatorcontrib><title>Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology. In this paper, we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems. We provide an algorithm to generate anisotropic meshes under the given metric tensor. We show that the inverse of the anisotropic diffusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects: better discrete algebraic systems, more accurate finite element solution and superconvergence on the mesh nodes. Various numerical examples demonstrating the effectiveness are presented.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Applications of Mathematics</subject><subject>Finite element method</subject><subject>Inverse</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mesh generation</subject><subject>Tensors</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkT1vwyAQhq2qlRql-QHdPHah5QwGPEZRv6RIXdKuCGNIHCXggD303xfXlbq1QQKO43lPp3uz7BbwPWDMHyIALUqEgSDKC4HoRTYDwSqUjuIyxYxTlD7IdbaIcY_TIhWmnMwyu3Rt9H3wXavzo4m7fGucCapvvUvvfuebmNcqmiZPieXqY5Mr1-RO9UNQh5EISWh9SOnfQuZwaLt-DE7Dd6mb7MqqQzSLn3uevT89blYvaP32_LparpGmBe4RIbTBddXUoCiplRaVFRWzDacgQDGmwGJbgjI1MKN1YUsqwJQgCDNGK0Hm2d1Utwv-NJjYy2MbdWpHOeOHKNMkeAWMcDgHhZLjktP_0ZIxkTbgM9AScEVZQRIKE6qDjzEYK7vQHlX4lIDl6KucfJXJVzn6KsdOikkTE-u2Jsi9H4JLI_1D9AV96aU5</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Huang, YunQing</creator><creator>Su, YiFan</creator><creator>Wei, HuaYi</creator><creator>Yi, NianYu</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20131201</creationdate><title>Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation</title><author>Huang, YunQing ; Su, YiFan ; Wei, HuaYi ; Yi, NianYu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-334d0b9db1a43bac89f896fd74181a66a1f0f51aeb16ecc2f5481e51836eeca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Applications of Mathematics</topic><topic>Finite element method</topic><topic>Inverse</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mesh generation</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, YunQing</creatorcontrib><creatorcontrib>Su, YiFan</creatorcontrib><creatorcontrib>Wei, HuaYi</creatorcontrib><creatorcontrib>Yi, NianYu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, YunQing</au><au>Su, YiFan</au><au>Wei, HuaYi</au><au>Yi, NianYu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>56</volume><issue>12</issue><spage>2615</spage><epage>2630</epage><pages>2615-2630</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology. In this paper, we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems. We provide an algorithm to generate anisotropic meshes under the given metric tensor. We show that the inverse of the anisotropic diffusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects: better discrete algebraic systems, more accurate finite element solution and superconvergence on the mesh nodes. Various numerical examples demonstrating the effectiveness are presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11425-013-4728-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2013-12, Vol.56 (12), p.2615-2630
issn 1674-7283
1006-9283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1677916371
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Algorithms
Anisotropy
Applications of Mathematics
Finite element method
Inverse
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Mesh generation
Tensors
title Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20mesh%20generation%20methods%20based%20on%20ACVT%20and%20natural%20metric%20for%20anisotropic%20elliptic%20equation&rft.jtitle=Science%20China.%20Mathematics&rft.au=Huang,%20YunQing&rft.date=2013-12-01&rft.volume=56&rft.issue=12&rft.spage=2615&rft.epage=2630&rft.pages=2615-2630&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-013-4728-4&rft_dat=%3Cproquest_cross%3E1566856610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551094623&rft_id=info:pmid/&rfr_iscdi=true