Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach

•Debonding occurred at the matrix–fiber interface.•A global width effect was not observed.•After the onset of debonding friction contributed to the increase of the load.•The effective bond length leff due to bond was estimated to be 255mm.•Cohesive material law and fracture energy were obtained from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2014-02, Vol.117, p.94-111
Hauptverfasser: D’Antino, T., Carloni, C., Sneed, L.H., Pellegrino, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 94
container_title Engineering fracture mechanics
container_volume 117
creator D’Antino, T.
Carloni, C.
Sneed, L.H.
Pellegrino, C.
description •Debonding occurred at the matrix–fiber interface.•A global width effect was not observed.•After the onset of debonding friction contributed to the increase of the load.•The effective bond length leff due to bond was estimated to be 255mm.•Cohesive material law and fracture energy were obtained from strain profiles. The results of single-lap shear tests, conducted on specimens with fiber reinforced cementitious matrix (FRCM) composite strips bonded to concrete blocks, are presented in this paper. The FRCM composite was comprised of polyparaphenylene benzobisoxazole (PBO) fibers and polymer-modified cement-based mortar. This study indicates that in PBO FRCM–concrete joints debonding mainly occurs at the matrix–fiber interface. Friction between fiber filaments and between fibers and matrix is observed after the debonding process initiates. The experimental data suggest that a width effect does not exist among the fiber bundles, and an effective bond length can be defined and is approximately 260mm. Axial strain profiles along the bonded length are analyzed to investigate the stress-transfer mechanism at the matrix–fiber interface.
doi_str_mv 10.1016/j.engfracmech.2014.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677915785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794414000125</els_id><sourcerecordid>1559689938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3d3c9a53bab069d04eb5e112dd99f4baa25a73dcbdc32665920e2c541dafc3453</originalsourceid><addsrcrecordid>eNqNUEtOwzAUtBBIlMIdzI5Ni18cJzG7UlFAKiqqYG059gt11Xyw0wp23IEbchISlQXLSiO9t5iPZgi5BDYGBsn1eozVW-G1KdGsxhGDeMygAxyRAWQpH6UcxDEZMAbdL-P4lJyFsGaMpUnGBmT5pFvvPn6-vguXo6d5XVma40rvXO2pq-jz7YLOltMnauqyqYNrMdzQCe0j261H2ufqyplAddP4WpvVOTkp9Cbgxd8dktfZ3cv0YTRf3D9OJ_ORiXnWjrjlRmrBc52zRFoWYy4QILJWyiLOtY6ETrk1uTU8ShIhI4aRETFYXRgeCz4kV3vfLvZ9i6FVpQsGNxtdYb0NCpI0lSDS7ACqEDLJpORZR5V7qvF1CB4L1XhXav-pgKl-crVW_yZX_eSKQQfotNO9FrvaO4deBeOwMmidR9MqW7sDXH4B0t2Qpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559689938</pqid></control><display><type>article</type><title>Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>D’Antino, T. ; Carloni, C. ; Sneed, L.H. ; Pellegrino, C.</creator><creatorcontrib>D’Antino, T. ; Carloni, C. ; Sneed, L.H. ; Pellegrino, C.</creatorcontrib><description>•Debonding occurred at the matrix–fiber interface.•A global width effect was not observed.•After the onset of debonding friction contributed to the increase of the load.•The effective bond length leff due to bond was estimated to be 255mm.•Cohesive material law and fracture energy were obtained from strain profiles. The results of single-lap shear tests, conducted on specimens with fiber reinforced cementitious matrix (FRCM) composite strips bonded to concrete blocks, are presented in this paper. The FRCM composite was comprised of polyparaphenylene benzobisoxazole (PBO) fibers and polymer-modified cement-based mortar. This study indicates that in PBO FRCM–concrete joints debonding mainly occurs at the matrix–fiber interface. Friction between fiber filaments and between fibers and matrix is observed after the debonding process initiates. The experimental data suggest that a width effect does not exist among the fiber bundles, and an effective bond length can be defined and is approximately 260mm. Axial strain profiles along the bonded length are analyzed to investigate the stress-transfer mechanism at the matrix–fiber interface.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2014.01.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bond ; Bonding ; Cementitious matrix ; Concrete ; Concrete blocks ; Debonding ; Fibers ; Fracture mechanics ; FRCM composite ; Friction ; Mode-II ; Mortars ; Shear tests</subject><ispartof>Engineering fracture mechanics, 2014-02, Vol.117, p.94-111</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3d3c9a53bab069d04eb5e112dd99f4baa25a73dcbdc32665920e2c541dafc3453</citedby><cites>FETCH-LOGICAL-c438t-3d3c9a53bab069d04eb5e112dd99f4baa25a73dcbdc32665920e2c541dafc3453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2014.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>D’Antino, T.</creatorcontrib><creatorcontrib>Carloni, C.</creatorcontrib><creatorcontrib>Sneed, L.H.</creatorcontrib><creatorcontrib>Pellegrino, C.</creatorcontrib><title>Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach</title><title>Engineering fracture mechanics</title><description>•Debonding occurred at the matrix–fiber interface.•A global width effect was not observed.•After the onset of debonding friction contributed to the increase of the load.•The effective bond length leff due to bond was estimated to be 255mm.•Cohesive material law and fracture energy were obtained from strain profiles. The results of single-lap shear tests, conducted on specimens with fiber reinforced cementitious matrix (FRCM) composite strips bonded to concrete blocks, are presented in this paper. The FRCM composite was comprised of polyparaphenylene benzobisoxazole (PBO) fibers and polymer-modified cement-based mortar. This study indicates that in PBO FRCM–concrete joints debonding mainly occurs at the matrix–fiber interface. Friction between fiber filaments and between fibers and matrix is observed after the debonding process initiates. The experimental data suggest that a width effect does not exist among the fiber bundles, and an effective bond length can be defined and is approximately 260mm. Axial strain profiles along the bonded length are analyzed to investigate the stress-transfer mechanism at the matrix–fiber interface.</description><subject>Bond</subject><subject>Bonding</subject><subject>Cementitious matrix</subject><subject>Concrete</subject><subject>Concrete blocks</subject><subject>Debonding</subject><subject>Fibers</subject><subject>Fracture mechanics</subject><subject>FRCM composite</subject><subject>Friction</subject><subject>Mode-II</subject><subject>Mortars</subject><subject>Shear tests</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUEtOwzAUtBBIlMIdzI5Ni18cJzG7UlFAKiqqYG059gt11Xyw0wp23IEbchISlQXLSiO9t5iPZgi5BDYGBsn1eozVW-G1KdGsxhGDeMygAxyRAWQpH6UcxDEZMAbdL-P4lJyFsGaMpUnGBmT5pFvvPn6-vguXo6d5XVma40rvXO2pq-jz7YLOltMnauqyqYNrMdzQCe0j261H2ufqyplAddP4WpvVOTkp9Cbgxd8dktfZ3cv0YTRf3D9OJ_ORiXnWjrjlRmrBc52zRFoWYy4QILJWyiLOtY6ETrk1uTU8ShIhI4aRETFYXRgeCz4kV3vfLvZ9i6FVpQsGNxtdYb0NCpI0lSDS7ACqEDLJpORZR5V7qvF1CB4L1XhXav-pgKl-crVW_yZX_eSKQQfotNO9FrvaO4deBeOwMmidR9MqW7sDXH4B0t2Qpw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>D’Antino, T.</creator><creator>Carloni, C.</creator><creator>Sneed, L.H.</creator><creator>Pellegrino, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201402</creationdate><title>Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach</title><author>D’Antino, T. ; Carloni, C. ; Sneed, L.H. ; Pellegrino, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3d3c9a53bab069d04eb5e112dd99f4baa25a73dcbdc32665920e2c541dafc3453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bond</topic><topic>Bonding</topic><topic>Cementitious matrix</topic><topic>Concrete</topic><topic>Concrete blocks</topic><topic>Debonding</topic><topic>Fibers</topic><topic>Fracture mechanics</topic><topic>FRCM composite</topic><topic>Friction</topic><topic>Mode-II</topic><topic>Mortars</topic><topic>Shear tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Antino, T.</creatorcontrib><creatorcontrib>Carloni, C.</creatorcontrib><creatorcontrib>Sneed, L.H.</creatorcontrib><creatorcontrib>Pellegrino, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Antino, T.</au><au>Carloni, C.</au><au>Sneed, L.H.</au><au>Pellegrino, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2014-02</date><risdate>2014</risdate><volume>117</volume><spage>94</spage><epage>111</epage><pages>94-111</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Debonding occurred at the matrix–fiber interface.•A global width effect was not observed.•After the onset of debonding friction contributed to the increase of the load.•The effective bond length leff due to bond was estimated to be 255mm.•Cohesive material law and fracture energy were obtained from strain profiles. The results of single-lap shear tests, conducted on specimens with fiber reinforced cementitious matrix (FRCM) composite strips bonded to concrete blocks, are presented in this paper. The FRCM composite was comprised of polyparaphenylene benzobisoxazole (PBO) fibers and polymer-modified cement-based mortar. This study indicates that in PBO FRCM–concrete joints debonding mainly occurs at the matrix–fiber interface. Friction between fiber filaments and between fibers and matrix is observed after the debonding process initiates. The experimental data suggest that a width effect does not exist among the fiber bundles, and an effective bond length can be defined and is approximately 260mm. Axial strain profiles along the bonded length are analyzed to investigate the stress-transfer mechanism at the matrix–fiber interface.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2014.01.011</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2014-02, Vol.117, p.94-111
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_1677915785
source ScienceDirect Journals (5 years ago - present)
subjects Bond
Bonding
Cementitious matrix
Concrete
Concrete blocks
Debonding
Fibers
Fracture mechanics
FRCM composite
Friction
Mode-II
Mortars
Shear tests
title Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%E2%80%93fiber%20bond%20behavior%20in%20PBO%20FRCM%20composites:%20A%20fracture%20mechanics%20approach&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=D%E2%80%99Antino,%20T.&rft.date=2014-02&rft.volume=117&rft.spage=94&rft.epage=111&rft.pages=94-111&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2014.01.011&rft_dat=%3Cproquest_cross%3E1559689938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559689938&rft_id=info:pmid/&rft_els_id=S0013794414000125&rfr_iscdi=true