Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer

The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020
Hauptverfasser: Heintz, Keely, Schilke, Karl F., Snider, Joshua, Lee, Woo-Kul, Truong, Mitchell, Coblyn, Matthew, Jovanovic, Goran, McGuire, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue 5
container_start_page 1014
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 102
creator Heintz, Keely
Schilke, Karl F.
Snider, Joshua
Lee, Woo-Kul
Truong, Mitchell
Coblyn, Matthew
Jovanovic, Goran
McGuire, Joseph
description The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.
doi_str_mv 10.1002/jbm.b.33082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677915222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1535628911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</originalsourceid><addsrcrecordid>eNqN0c9rFDEUB_Agiq3Vk3cZEEGQWfNeJsnkqKVuhdIWqfQYkklCZ50fazIjtn99s911BS_1kh_kw-O9fAl5DXQBlOLHle0XdsEYrfEJOQTOsaxUDU_3Z8kOyIuUVhkLytlzcoAV47IS_JB8u4x-baKZ2nEozOAK_8t08_Y6huLy5KJsRjN5V_R5ja3pUhHGWJiib5s4NjdmGHxX3Ph-dPnx9s7Hl-RZyMy_2u1H5PuXk6vj0_LsYvn1-NNZ2VQcprLC3I71oGywNbOVCFUAhTI3BgjUOI6hNrWzxqFwiErUrvIoOARUFh07Iu-3dddx_Dn7NOm-TY3vOjP4cU4ahJQKOCL-BxUVKMkFfZxyxgXWCiDTt__Q1TjHIc-8KUhBcck26sNW5e9KKfqg17HtTbzVQPUmQJ0D1FY_BJj1m13N2fbe7e2fxDJ4twMmNaYL0QxNm_66WgDmWbIrt65Nk_-9fzfxhxaSSa6vz5eaLq8_U7UEfcXuAUurr-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660195731</pqid></control><display><type>article</type><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</creator><creatorcontrib>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</creatorcontrib><description>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33082</identifier><identifier>PMID: 24357465</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Biomedical materials ; Blood flow ; Coated Materials, Biocompatible - chemistry ; Devices ; Dimethylpolysiloxanes - chemistry ; Kidneys, Artificial ; Materials research ; Materials science ; Medical sciences ; Microchannels ; PEO-polybutadiene-PEO triblock polymer ; polyacrylonitrile membrane ; Polyacrylonitriles ; polycarbonate ; Polycarbonates ; Polycarboxylate Cement - chemistry ; Polyethylene Glycols ; protein repulsion ; Silicone resins ; Surface chemistry ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; urea permeability</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020</ispartof><rights>2015 INIST-CNRS</rights><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</citedby><cites>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28612419$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24357465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heintz, Keely</creatorcontrib><creatorcontrib>Schilke, Karl F.</creatorcontrib><creatorcontrib>Snider, Joshua</creatorcontrib><creatorcontrib>Lee, Woo-Kul</creatorcontrib><creatorcontrib>Truong, Mitchell</creatorcontrib><creatorcontrib>Coblyn, Matthew</creatorcontrib><creatorcontrib>Jovanovic, Goran</creatorcontrib><creatorcontrib>McGuire, Joseph</creatorcontrib><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</description><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Blood flow</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Devices</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Kidneys, Artificial</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Microchannels</subject><subject>PEO-polybutadiene-PEO triblock polymer</subject><subject>polyacrylonitrile membrane</subject><subject>Polyacrylonitriles</subject><subject>polycarbonate</subject><subject>Polycarbonates</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polyethylene Glycols</subject><subject>protein repulsion</subject><subject>Silicone resins</subject><subject>Surface chemistry</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>urea permeability</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9rFDEUB_Agiq3Vk3cZEEGQWfNeJsnkqKVuhdIWqfQYkklCZ50fazIjtn99s911BS_1kh_kw-O9fAl5DXQBlOLHle0XdsEYrfEJOQTOsaxUDU_3Z8kOyIuUVhkLytlzcoAV47IS_JB8u4x-baKZ2nEozOAK_8t08_Y6huLy5KJsRjN5V_R5ja3pUhHGWJiib5s4NjdmGHxX3Ph-dPnx9s7Hl-RZyMy_2u1H5PuXk6vj0_LsYvn1-NNZ2VQcprLC3I71oGywNbOVCFUAhTI3BgjUOI6hNrWzxqFwiErUrvIoOARUFh07Iu-3dddx_Dn7NOm-TY3vOjP4cU4ahJQKOCL-BxUVKMkFfZxyxgXWCiDTt__Q1TjHIc-8KUhBcck26sNW5e9KKfqg17HtTbzVQPUmQJ0D1FY_BJj1m13N2fbe7e2fxDJ4twMmNaYL0QxNm_66WgDmWbIrt65Nk_-9fzfxhxaSSa6vz5eaLq8_U7UEfcXuAUurr-s</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Heintz, Keely</creator><creator>Schilke, Karl F.</creator><creator>Snider, Joshua</creator><creator>Lee, Woo-Kul</creator><creator>Truong, Mitchell</creator><creator>Coblyn, Matthew</creator><creator>Jovanovic, Goran</creator><creator>McGuire, Joseph</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140701</creationdate><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><author>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Blood flow</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Devices</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Kidneys, Artificial</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Microchannels</topic><topic>PEO-polybutadiene-PEO triblock polymer</topic><topic>polyacrylonitrile membrane</topic><topic>Polyacrylonitriles</topic><topic>polycarbonate</topic><topic>Polycarbonates</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polyethylene Glycols</topic><topic>protein repulsion</topic><topic>Silicone resins</topic><topic>Surface chemistry</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>urea permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heintz, Keely</creatorcontrib><creatorcontrib>Schilke, Karl F.</creatorcontrib><creatorcontrib>Snider, Joshua</creatorcontrib><creatorcontrib>Lee, Woo-Kul</creatorcontrib><creatorcontrib>Truong, Mitchell</creatorcontrib><creatorcontrib>Coblyn, Matthew</creatorcontrib><creatorcontrib>Jovanovic, Goran</creatorcontrib><creatorcontrib>McGuire, Joseph</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heintz, Keely</au><au>Schilke, Karl F.</au><au>Snider, Joshua</au><au>Lee, Woo-Kul</au><au>Truong, Mitchell</au><au>Coblyn, Matthew</au><au>Jovanovic, Goran</au><au>McGuire, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>102</volume><issue>5</issue><spage>1014</spage><epage>1020</epage><pages>1014-1020</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24357465</pmid><doi>10.1002/jbm.b.33082</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1677915222
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Biomedical materials
Blood flow
Coated Materials, Biocompatible - chemistry
Devices
Dimethylpolysiloxanes - chemistry
Kidneys, Artificial
Materials research
Materials science
Medical sciences
Microchannels
PEO-polybutadiene-PEO triblock polymer
polyacrylonitrile membrane
Polyacrylonitriles
polycarbonate
Polycarbonates
Polycarboxylate Cement - chemistry
Polyethylene Glycols
protein repulsion
Silicone resins
Surface chemistry
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
urea permeability
title Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20evaluation%20of%20PEO-coated%20materials%20for%20a%20microchannel%20hemodialyzer&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Heintz,%20Keely&rft.date=2014-07-01&rft.volume=102&rft.issue=5&rft.spage=1014&rft.epage=1020&rft.pages=1014-1020&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33082&rft_dat=%3Cproquest_cross%3E1535628911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660195731&rft_id=info:pmid/24357465&rfr_iscdi=true