Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer
The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1020 |
---|---|
container_issue | 5 |
container_start_page | 1014 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 102 |
creator | Heintz, Keely Schilke, Karl F. Snider, Joshua Lee, Woo-Kul Truong, Mitchell Coblyn, Matthew Jovanovic, Goran McGuire, Joseph |
description | The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer. |
doi_str_mv | 10.1002/jbm.b.33082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677915222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1535628911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</originalsourceid><addsrcrecordid>eNqN0c9rFDEUB_Agiq3Vk3cZEEGQWfNeJsnkqKVuhdIWqfQYkklCZ50fazIjtn99s911BS_1kh_kw-O9fAl5DXQBlOLHle0XdsEYrfEJOQTOsaxUDU_3Z8kOyIuUVhkLytlzcoAV47IS_JB8u4x-baKZ2nEozOAK_8t08_Y6huLy5KJsRjN5V_R5ja3pUhHGWJiib5s4NjdmGHxX3Ph-dPnx9s7Hl-RZyMy_2u1H5PuXk6vj0_LsYvn1-NNZ2VQcprLC3I71oGywNbOVCFUAhTI3BgjUOI6hNrWzxqFwiErUrvIoOARUFh07Iu-3dddx_Dn7NOm-TY3vOjP4cU4ahJQKOCL-BxUVKMkFfZxyxgXWCiDTt__Q1TjHIc-8KUhBcck26sNW5e9KKfqg17HtTbzVQPUmQJ0D1FY_BJj1m13N2fbe7e2fxDJ4twMmNaYL0QxNm_66WgDmWbIrt65Nk_-9fzfxhxaSSa6vz5eaLq8_U7UEfcXuAUurr-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660195731</pqid></control><display><type>article</type><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</creator><creatorcontrib>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</creatorcontrib><description>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33082</identifier><identifier>PMID: 24357465</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Biomedical materials ; Blood flow ; Coated Materials, Biocompatible - chemistry ; Devices ; Dimethylpolysiloxanes - chemistry ; Kidneys, Artificial ; Materials research ; Materials science ; Medical sciences ; Microchannels ; PEO-polybutadiene-PEO triblock polymer ; polyacrylonitrile membrane ; Polyacrylonitriles ; polycarbonate ; Polycarbonates ; Polycarboxylate Cement - chemistry ; Polyethylene Glycols ; protein repulsion ; Silicone resins ; Surface chemistry ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; urea permeability</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020</ispartof><rights>2015 INIST-CNRS</rights><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</citedby><cites>FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28612419$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24357465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heintz, Keely</creatorcontrib><creatorcontrib>Schilke, Karl F.</creatorcontrib><creatorcontrib>Snider, Joshua</creatorcontrib><creatorcontrib>Lee, Woo-Kul</creatorcontrib><creatorcontrib>Truong, Mitchell</creatorcontrib><creatorcontrib>Coblyn, Matthew</creatorcontrib><creatorcontrib>Jovanovic, Goran</creatorcontrib><creatorcontrib>McGuire, Joseph</creatorcontrib><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</description><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Blood flow</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Devices</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Kidneys, Artificial</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Microchannels</subject><subject>PEO-polybutadiene-PEO triblock polymer</subject><subject>polyacrylonitrile membrane</subject><subject>Polyacrylonitriles</subject><subject>polycarbonate</subject><subject>Polycarbonates</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polyethylene Glycols</subject><subject>protein repulsion</subject><subject>Silicone resins</subject><subject>Surface chemistry</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>urea permeability</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9rFDEUB_Agiq3Vk3cZEEGQWfNeJsnkqKVuhdIWqfQYkklCZ50fazIjtn99s911BS_1kh_kw-O9fAl5DXQBlOLHle0XdsEYrfEJOQTOsaxUDU_3Z8kOyIuUVhkLytlzcoAV47IS_JB8u4x-baKZ2nEozOAK_8t08_Y6huLy5KJsRjN5V_R5ja3pUhHGWJiib5s4NjdmGHxX3Ph-dPnx9s7Hl-RZyMy_2u1H5PuXk6vj0_LsYvn1-NNZ2VQcprLC3I71oGywNbOVCFUAhTI3BgjUOI6hNrWzxqFwiErUrvIoOARUFh07Iu-3dddx_Dn7NOm-TY3vOjP4cU4ahJQKOCL-BxUVKMkFfZxyxgXWCiDTt__Q1TjHIc-8KUhBcck26sNW5e9KKfqg17HtTbzVQPUmQJ0D1FY_BJj1m13N2fbe7e2fxDJ4twMmNaYL0QxNm_66WgDmWbIrt65Nk_-9fzfxhxaSSa6vz5eaLq8_U7UEfcXuAUurr-s</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Heintz, Keely</creator><creator>Schilke, Karl F.</creator><creator>Snider, Joshua</creator><creator>Lee, Woo-Kul</creator><creator>Truong, Mitchell</creator><creator>Coblyn, Matthew</creator><creator>Jovanovic, Goran</creator><creator>McGuire, Joseph</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140701</creationdate><title>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</title><author>Heintz, Keely ; Schilke, Karl F. ; Snider, Joshua ; Lee, Woo-Kul ; Truong, Mitchell ; Coblyn, Matthew ; Jovanovic, Goran ; McGuire, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-42026be19bfb83b46f4f19275741210ad52f8a8dbad26d22968d4e2651f29b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Blood flow</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Devices</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Kidneys, Artificial</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Microchannels</topic><topic>PEO-polybutadiene-PEO triblock polymer</topic><topic>polyacrylonitrile membrane</topic><topic>Polyacrylonitriles</topic><topic>polycarbonate</topic><topic>Polycarbonates</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polyethylene Glycols</topic><topic>protein repulsion</topic><topic>Silicone resins</topic><topic>Surface chemistry</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>urea permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heintz, Keely</creatorcontrib><creatorcontrib>Schilke, Karl F.</creatorcontrib><creatorcontrib>Snider, Joshua</creatorcontrib><creatorcontrib>Lee, Woo-Kul</creatorcontrib><creatorcontrib>Truong, Mitchell</creatorcontrib><creatorcontrib>Coblyn, Matthew</creatorcontrib><creatorcontrib>Jovanovic, Goran</creatorcontrib><creatorcontrib>McGuire, Joseph</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heintz, Keely</au><au>Schilke, Karl F.</au><au>Snider, Joshua</au><au>Lee, Woo-Kul</au><au>Truong, Mitchell</au><au>Coblyn, Matthew</au><au>Jovanovic, Goran</au><au>McGuire, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>102</volume><issue>5</issue><spage>1014</spage><epage>1020</epage><pages>1014-1020</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24357465</pmid><doi>10.1002/jbm.b.33082</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2014-07, Vol.102 (5), p.1014-1020 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677915222 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Biomedical materials Blood flow Coated Materials, Biocompatible - chemistry Devices Dimethylpolysiloxanes - chemistry Kidneys, Artificial Materials research Materials science Medical sciences Microchannels PEO-polybutadiene-PEO triblock polymer polyacrylonitrile membrane Polyacrylonitriles polycarbonate Polycarbonates Polycarboxylate Cement - chemistry Polyethylene Glycols protein repulsion Silicone resins Surface chemistry Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments urea permeability |
title | Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20evaluation%20of%20PEO-coated%20materials%20for%20a%20microchannel%20hemodialyzer&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Heintz,%20Keely&rft.date=2014-07-01&rft.volume=102&rft.issue=5&rft.spage=1014&rft.epage=1020&rft.pages=1014-1020&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33082&rft_dat=%3Cproquest_cross%3E1535628911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660195731&rft_id=info:pmid/24357465&rfr_iscdi=true |