Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering
Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosil...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2014-09, Vol.102 (9), p.3229-3236 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3236 |
---|---|
container_issue | 9 |
container_start_page | 3229 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 102 |
creator | Demirdögen, B. Plazas Bonilla, C. E. Trujillo, S. Perilla, J. E. Elcin, A. E. Elcin, Y. M. Gómez Ribelles, J. L. |
description | Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014. |
doi_str_mv | 10.1002/jbm.a.34999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677914909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677914909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</originalsourceid><addsrcrecordid>eNqNkctrFEEQxgdRTIyevEuDCILM2u-ePibBrMao4AOPTU9Pbex1HpvuGeL-99a4mwgeJKcuun711eMriqeMLhil_PW67hZ-IaS19l5xyJTipbRa3Z9jaUvBrT4oHuW8RlhTxR8WB1wybZgSh8XVl9jG4EkY_Bj7SzKsyPgDyGZIQK592-b5x5MuhjTg5zBlzLXb4DdpaH0Yhx5IB12dPAbjQGogU4aGxJ7Uc26MOU9AoL-MPUDCFo-LByvfZniyf4-Kb2dvvp6-LS8-Ld-dHl-UQWkcOxhjpLC0bpi0PDRB60oZw3XdCAuGywqYFCsuKFScCquZVcr6RqpKqkYLcVS83OnipFcT5NF1MQdoW5wU13B4AWNRm9o7oFoya2R1B1UlK2xeMY7o83_Q9TClHneeBSmz0qgKqVc7Cg-cc4KV26TY-bR1jLrZX4f-Ou_--Iv0s73mVHfQ3LI3hiLwYg_4HHy7Ql9CzH-5yjAqDEOO77jr2ML2fz3d-cmH45vu5a4o5hF-3Rb59NNpI4xy3z8unfx8fkb58r1bit-X58of</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660194758</pqid></control><display><type>article</type><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</creator><creatorcontrib>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</creatorcontrib><description>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34999</identifier><identifier>PMID: 24167153</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biomedical materials ; Biotechnology ; Bones ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coating ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hybrid composites ; Industrial applications and implications. Economical aspects ; Medical sciences ; Membranes ; Membranes, Artificial ; mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Miscellaneous ; Osteoblasts - cytology ; Osteogenesis ; osteogenic differentiation ; Polycaprolactone ; polycaprolactone-silica ; Polyesters - chemistry ; Porosity ; Rats ; silica coating ; Silicon dioxide ; Silicon Dioxide - chemistry ; Sol gel process ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tetraethyl orthosilicate ; Tissue Engineering - methods</subject><ispartof>Journal of biomedical materials research. Part A, 2014-09, Vol.102 (9), p.3229-3236</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</citedby><cites>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28710371$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24167153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demirdögen, B.</creatorcontrib><creatorcontrib>Plazas Bonilla, C. E.</creatorcontrib><creatorcontrib>Trujillo, S.</creatorcontrib><creatorcontrib>Perilla, J. E.</creatorcontrib><creatorcontrib>Elcin, A. E.</creatorcontrib><creatorcontrib>Elcin, Y. M.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bones</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hybrid composites</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteogenesis</subject><subject>osteogenic differentiation</subject><subject>Polycaprolactone</subject><subject>polycaprolactone-silica</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Rats</subject><subject>silica coating</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Sol gel process</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tetraethyl orthosilicate</subject><subject>Tissue Engineering - methods</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctrFEEQxgdRTIyevEuDCILM2u-ePibBrMao4AOPTU9Pbex1HpvuGeL-99a4mwgeJKcuun711eMriqeMLhil_PW67hZ-IaS19l5xyJTipbRa3Z9jaUvBrT4oHuW8RlhTxR8WB1wybZgSh8XVl9jG4EkY_Bj7SzKsyPgDyGZIQK592-b5x5MuhjTg5zBlzLXb4DdpaH0Yhx5IB12dPAbjQGogU4aGxJ7Uc26MOU9AoL-MPUDCFo-LByvfZniyf4-Kb2dvvp6-LS8-Ld-dHl-UQWkcOxhjpLC0bpi0PDRB60oZw3XdCAuGywqYFCsuKFScCquZVcr6RqpKqkYLcVS83OnipFcT5NF1MQdoW5wU13B4AWNRm9o7oFoya2R1B1UlK2xeMY7o83_Q9TClHneeBSmz0qgKqVc7Cg-cc4KV26TY-bR1jLrZX4f-Ou_--Iv0s73mVHfQ3LI3hiLwYg_4HHy7Ql9CzH-5yjAqDEOO77jr2ML2fz3d-cmH45vu5a4o5hF-3Rb59NNpI4xy3z8unfx8fkb58r1bit-X58of</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Demirdögen, B.</creator><creator>Plazas Bonilla, C. E.</creator><creator>Trujillo, S.</creator><creator>Perilla, J. E.</creator><creator>Elcin, A. E.</creator><creator>Elcin, Y. M.</creator><creator>Gómez Ribelles, J. L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><author>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bones</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hybrid composites</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteogenesis</topic><topic>osteogenic differentiation</topic><topic>Polycaprolactone</topic><topic>polycaprolactone-silica</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Rats</topic><topic>silica coating</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Sol gel process</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tetraethyl orthosilicate</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirdögen, B.</creatorcontrib><creatorcontrib>Plazas Bonilla, C. E.</creatorcontrib><creatorcontrib>Trujillo, S.</creatorcontrib><creatorcontrib>Perilla, J. E.</creatorcontrib><creatorcontrib>Elcin, A. E.</creatorcontrib><creatorcontrib>Elcin, Y. M.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirdögen, B.</au><au>Plazas Bonilla, C. E.</au><au>Trujillo, S.</au><au>Perilla, J. E.</au><au>Elcin, A. E.</au><au>Elcin, Y. M.</au><au>Gómez Ribelles, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-09</date><risdate>2014</risdate><volume>102</volume><issue>9</issue><spage>3229</spage><epage>3236</epage><pages>3229-3236</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24167153</pmid><doi>10.1002/jbm.a.34999</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2014-09, Vol.102 (9), p.3229-3236 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677914909 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biological and medical sciences Biomedical materials Biotechnology Bones Cells, Cultured Coated Materials, Biocompatible - chemistry Coating Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry hybrid composites Industrial applications and implications. Economical aspects Medical sciences Membranes Membranes, Artificial mesenchymal stem cells Mesenchymal Stromal Cells - cytology Miscellaneous Osteoblasts - cytology Osteogenesis osteogenic differentiation Polycaprolactone polycaprolactone-silica Polyesters - chemistry Porosity Rats silica coating Silicon dioxide Silicon Dioxide - chemistry Sol gel process Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tetraethyl orthosilicate Tissue Engineering - methods |
title | Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20coating%20of%20the%20pore%20walls%20of%20a%20microporous%20polycaprolactone%20membrane%20to%20be%20used%20in%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Demird%C3%B6gen,%20B.&rft.date=2014-09&rft.volume=102&rft.issue=9&rft.spage=3229&rft.epage=3236&rft.pages=3229-3236&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34999&rft_dat=%3Cproquest_cross%3E1677914909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660194758&rft_id=info:pmid/24167153&rfr_iscdi=true |