Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering

Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2014-09, Vol.102 (9), p.3229-3236
Hauptverfasser: Demirdögen, B., Plazas Bonilla, C. E., Trujillo, S., Perilla, J. E., Elcin, A. E., Elcin, Y. M., Gómez Ribelles, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3236
container_issue 9
container_start_page 3229
container_title Journal of biomedical materials research. Part A
container_volume 102
creator Demirdögen, B.
Plazas Bonilla, C. E.
Trujillo, S.
Perilla, J. E.
Elcin, A. E.
Elcin, Y. M.
Gómez Ribelles, J. L.
description Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.
doi_str_mv 10.1002/jbm.a.34999
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677914909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677914909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</originalsourceid><addsrcrecordid>eNqNkctrFEEQxgdRTIyevEuDCILM2u-ePibBrMao4AOPTU9Pbex1HpvuGeL-99a4mwgeJKcuun711eMriqeMLhil_PW67hZ-IaS19l5xyJTipbRa3Z9jaUvBrT4oHuW8RlhTxR8WB1wybZgSh8XVl9jG4EkY_Bj7SzKsyPgDyGZIQK592-b5x5MuhjTg5zBlzLXb4DdpaH0Yhx5IB12dPAbjQGogU4aGxJ7Uc26MOU9AoL-MPUDCFo-LByvfZniyf4-Kb2dvvp6-LS8-Ld-dHl-UQWkcOxhjpLC0bpi0PDRB60oZw3XdCAuGywqYFCsuKFScCquZVcr6RqpKqkYLcVS83OnipFcT5NF1MQdoW5wU13B4AWNRm9o7oFoya2R1B1UlK2xeMY7o83_Q9TClHneeBSmz0qgKqVc7Cg-cc4KV26TY-bR1jLrZX4f-Ou_--Iv0s73mVHfQ3LI3hiLwYg_4HHy7Ql9CzH-5yjAqDEOO77jr2ML2fz3d-cmH45vu5a4o5hF-3Rb59NNpI4xy3z8unfx8fkb58r1bit-X58of</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660194758</pqid></control><display><type>article</type><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</creator><creatorcontrib>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</creatorcontrib><description>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34999</identifier><identifier>PMID: 24167153</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biomedical materials ; Biotechnology ; Bones ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coating ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hybrid composites ; Industrial applications and implications. Economical aspects ; Medical sciences ; Membranes ; Membranes, Artificial ; mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Miscellaneous ; Osteoblasts - cytology ; Osteogenesis ; osteogenic differentiation ; Polycaprolactone ; polycaprolactone-silica ; Polyesters - chemistry ; Porosity ; Rats ; silica coating ; Silicon dioxide ; Silicon Dioxide - chemistry ; Sol gel process ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tetraethyl orthosilicate ; Tissue Engineering - methods</subject><ispartof>Journal of biomedical materials research. Part A, 2014-09, Vol.102 (9), p.3229-3236</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</citedby><cites>FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28710371$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24167153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demirdögen, B.</creatorcontrib><creatorcontrib>Plazas Bonilla, C. E.</creatorcontrib><creatorcontrib>Trujillo, S.</creatorcontrib><creatorcontrib>Perilla, J. E.</creatorcontrib><creatorcontrib>Elcin, A. E.</creatorcontrib><creatorcontrib>Elcin, Y. M.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bones</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hybrid composites</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteogenesis</subject><subject>osteogenic differentiation</subject><subject>Polycaprolactone</subject><subject>polycaprolactone-silica</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Rats</subject><subject>silica coating</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Sol gel process</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tetraethyl orthosilicate</subject><subject>Tissue Engineering - methods</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctrFEEQxgdRTIyevEuDCILM2u-ePibBrMao4AOPTU9Pbex1HpvuGeL-99a4mwgeJKcuun711eMriqeMLhil_PW67hZ-IaS19l5xyJTipbRa3Z9jaUvBrT4oHuW8RlhTxR8WB1wybZgSh8XVl9jG4EkY_Bj7SzKsyPgDyGZIQK592-b5x5MuhjTg5zBlzLXb4DdpaH0Yhx5IB12dPAbjQGogU4aGxJ7Uc26MOU9AoL-MPUDCFo-LByvfZniyf4-Kb2dvvp6-LS8-Ld-dHl-UQWkcOxhjpLC0bpi0PDRB60oZw3XdCAuGywqYFCsuKFScCquZVcr6RqpKqkYLcVS83OnipFcT5NF1MQdoW5wU13B4AWNRm9o7oFoya2R1B1UlK2xeMY7o83_Q9TClHneeBSmz0qgKqVc7Cg-cc4KV26TY-bR1jLrZX4f-Ou_--Iv0s73mVHfQ3LI3hiLwYg_4HHy7Ql9CzH-5yjAqDEOO77jr2ML2fz3d-cmH45vu5a4o5hF-3Rb59NNpI4xy3z8unfx8fkb58r1bit-X58of</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Demirdögen, B.</creator><creator>Plazas Bonilla, C. E.</creator><creator>Trujillo, S.</creator><creator>Perilla, J. E.</creator><creator>Elcin, A. E.</creator><creator>Elcin, Y. M.</creator><creator>Gómez Ribelles, J. L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</title><author>Demirdögen, B. ; Plazas Bonilla, C. E. ; Trujillo, S. ; Perilla, J. E. ; Elcin, A. E. ; Elcin, Y. M. ; Gómez Ribelles, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5649-c7774390bd1492cdc66857726bd39e7248e143f230e82039619559ad45845d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bones</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hybrid composites</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteogenesis</topic><topic>osteogenic differentiation</topic><topic>Polycaprolactone</topic><topic>polycaprolactone-silica</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Rats</topic><topic>silica coating</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Sol gel process</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tetraethyl orthosilicate</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirdögen, B.</creatorcontrib><creatorcontrib>Plazas Bonilla, C. E.</creatorcontrib><creatorcontrib>Trujillo, S.</creatorcontrib><creatorcontrib>Perilla, J. E.</creatorcontrib><creatorcontrib>Elcin, A. E.</creatorcontrib><creatorcontrib>Elcin, Y. M.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirdögen, B.</au><au>Plazas Bonilla, C. E.</au><au>Trujillo, S.</au><au>Perilla, J. E.</au><au>Elcin, A. E.</au><au>Elcin, Y. M.</au><au>Gómez Ribelles, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-09</date><risdate>2014</risdate><volume>102</volume><issue>9</issue><spage>3229</spage><epage>3236</epage><pages>3229-3236</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol–gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol–gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3229–3236, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24167153</pmid><doi>10.1002/jbm.a.34999</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2014-09, Vol.102 (9), p.3229-3236
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1677914909
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biological and medical sciences
Biomedical materials
Biotechnology
Bones
Cells, Cultured
Coated Materials, Biocompatible - chemistry
Coating
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
hybrid composites
Industrial applications and implications. Economical aspects
Medical sciences
Membranes
Membranes, Artificial
mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Miscellaneous
Osteoblasts - cytology
Osteogenesis
osteogenic differentiation
Polycaprolactone
polycaprolactone-silica
Polyesters - chemistry
Porosity
Rats
silica coating
Silicon dioxide
Silicon Dioxide - chemistry
Sol gel process
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tetraethyl orthosilicate
Tissue Engineering - methods
title Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20coating%20of%20the%20pore%20walls%20of%20a%20microporous%20polycaprolactone%20membrane%20to%20be%20used%20in%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Demird%C3%B6gen,%20B.&rft.date=2014-09&rft.volume=102&rft.issue=9&rft.spage=3229&rft.epage=3236&rft.pages=3229-3236&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34999&rft_dat=%3Cproquest_cross%3E1677914909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660194758&rft_id=info:pmid/24167153&rfr_iscdi=true