Experimentally verified point-to-point iterative learning control for highly coupled systems

Summary Iterative learning control (ILC) is a well‐established approach for precision tracking control of systems, which perform a repeated tracking task defined over a fixed time interval. Despite a rich theoretical framework accompanied by a wide array of application studies, comparatively little...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2015-03, Vol.29 (3), p.302-324
Hauptverfasser: Freeman, C.T., Dinh, Thanh V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 3
container_start_page 302
container_title International journal of adaptive control and signal processing
container_volume 29
creator Freeman, C.T.
Dinh, Thanh V.
description Summary Iterative learning control (ILC) is a well‐established approach for precision tracking control of systems, which perform a repeated tracking task defined over a fixed time interval. Despite a rich theoretical framework accompanied by a wide array of application studies, comparatively little attention has been paid to the case of multiple input, multiple output (MIMO) systems. Here, the presence of interacting dynamics often correlates with reduced performance. This article focuses on a general class of linear ILC algorithms and establishes links between interaction dynamics and reduced robustness to modeling uncertainty, and slower convergence. It then shows how these and other limitations can be addressed by relaxing the tracking requirement to include only a subset of time points along the time duration. This is the first analysis to show how so‐called ‘point‐to‐point’ ILC can address performance limitations associated with highly coupled systems. Theoretical observations are tested using a novel MIMO experimental test facility, which permits both exogenous disturbance injection and a variable level of coupling between input and output pairs. Results compare experimental observations with theoretical predictions over a wide range of interaction levels and with varying levels of injected noise. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/acs.2472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677914036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677914036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4342-f62326b1c427d901d072874e2d1865825ec872e5dcf8feb9bab00b1a295e05d03</originalsourceid><addsrcrecordid>eNp1kF1LHTEQhkOx0KMt9Ccs9MabPU6SzWZzqQdrBT8obfWmELLZWY3mbNZkj3r-vVGLotCrmWGedxgeQr5SmFMAtmNsmrNKsg9kRkGpklIqNsgMGgVlzZn8RDZTugLIO8pn5O_-_YjRLXGYjPfr4jYPvcOuGIMbpnIK5VNTuAmjmdwtFh5NHNxwUdgwTDH4og-xuHQXlzltw2r0OZzWacJl-kw-9sYn_PKvbpE_3_d_L36UR6cHh4vdo9JWvGJlXzPO6pbaislOAe1AskZWyDra1KJhAm0jGYrO9k2PrWpNC9BSw5RAEB3wLbL9fHeM4WaFadJLlyx6bwYMq6RpLaWiFfA6o9_eoVdhFYf8XaZqEBIEb14P2hhSitjrMTsyca0p6EfNOmvWj5ozWj6jd87j-r-c3l38esu7rOj-hTfxWteSS6HPTw70T1Udi_OzPa34A7HEjbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660570538</pqid></control><display><type>article</type><title>Experimentally verified point-to-point iterative learning control for highly coupled systems</title><source>Wiley Journals</source><creator>Freeman, C.T. ; Dinh, Thanh V.</creator><creatorcontrib>Freeman, C.T. ; Dinh, Thanh V.</creatorcontrib><description>Summary Iterative learning control (ILC) is a well‐established approach for precision tracking control of systems, which perform a repeated tracking task defined over a fixed time interval. Despite a rich theoretical framework accompanied by a wide array of application studies, comparatively little attention has been paid to the case of multiple input, multiple output (MIMO) systems. Here, the presence of interacting dynamics often correlates with reduced performance. This article focuses on a general class of linear ILC algorithms and establishes links between interaction dynamics and reduced robustness to modeling uncertainty, and slower convergence. It then shows how these and other limitations can be addressed by relaxing the tracking requirement to include only a subset of time points along the time duration. This is the first analysis to show how so‐called ‘point‐to‐point’ ILC can address performance limitations associated with highly coupled systems. Theoretical observations are tested using a novel MIMO experimental test facility, which permits both exogenous disturbance injection and a variable level of coupling between input and output pairs. Results compare experimental observations with theoretical predictions over a wide range of interaction levels and with varying levels of injected noise. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.2472</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Arrays ; Control systems ; Dynamical systems ; Dynamics ; industrial applications ; iterative learning control ; Iterative methods ; Joining ; Learning ; multivariable systems ; optimization methods ; Tracking</subject><ispartof>International journal of adaptive control and signal processing, 2015-03, Vol.29 (3), p.302-324</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4342-f62326b1c427d901d072874e2d1865825ec872e5dcf8feb9bab00b1a295e05d03</citedby><cites>FETCH-LOGICAL-c4342-f62326b1c427d901d072874e2d1865825ec872e5dcf8feb9bab00b1a295e05d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.2472$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.2472$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Freeman, C.T.</creatorcontrib><creatorcontrib>Dinh, Thanh V.</creatorcontrib><title>Experimentally verified point-to-point iterative learning control for highly coupled systems</title><title>International journal of adaptive control and signal processing</title><addtitle>Int. J. Adapt. Control Signal Process</addtitle><description>Summary Iterative learning control (ILC) is a well‐established approach for precision tracking control of systems, which perform a repeated tracking task defined over a fixed time interval. Despite a rich theoretical framework accompanied by a wide array of application studies, comparatively little attention has been paid to the case of multiple input, multiple output (MIMO) systems. Here, the presence of interacting dynamics often correlates with reduced performance. This article focuses on a general class of linear ILC algorithms and establishes links between interaction dynamics and reduced robustness to modeling uncertainty, and slower convergence. It then shows how these and other limitations can be addressed by relaxing the tracking requirement to include only a subset of time points along the time duration. This is the first analysis to show how so‐called ‘point‐to‐point’ ILC can address performance limitations associated with highly coupled systems. Theoretical observations are tested using a novel MIMO experimental test facility, which permits both exogenous disturbance injection and a variable level of coupling between input and output pairs. Results compare experimental observations with theoretical predictions over a wide range of interaction levels and with varying levels of injected noise. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>industrial applications</subject><subject>iterative learning control</subject><subject>Iterative methods</subject><subject>Joining</subject><subject>Learning</subject><subject>multivariable systems</subject><subject>optimization methods</subject><subject>Tracking</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LHTEQhkOx0KMt9Ccs9MabPU6SzWZzqQdrBT8obfWmELLZWY3mbNZkj3r-vVGLotCrmWGedxgeQr5SmFMAtmNsmrNKsg9kRkGpklIqNsgMGgVlzZn8RDZTugLIO8pn5O_-_YjRLXGYjPfr4jYPvcOuGIMbpnIK5VNTuAmjmdwtFh5NHNxwUdgwTDH4og-xuHQXlzltw2r0OZzWacJl-kw-9sYn_PKvbpE_3_d_L36UR6cHh4vdo9JWvGJlXzPO6pbaislOAe1AskZWyDra1KJhAm0jGYrO9k2PrWpNC9BSw5RAEB3wLbL9fHeM4WaFadJLlyx6bwYMq6RpLaWiFfA6o9_eoVdhFYf8XaZqEBIEb14P2hhSitjrMTsyca0p6EfNOmvWj5ozWj6jd87j-r-c3l38esu7rOj-hTfxWteSS6HPTw70T1Udi_OzPa34A7HEjbg</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Freeman, C.T.</creator><creator>Dinh, Thanh V.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201503</creationdate><title>Experimentally verified point-to-point iterative learning control for highly coupled systems</title><author>Freeman, C.T. ; Dinh, Thanh V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4342-f62326b1c427d901d072874e2d1865825ec872e5dcf8feb9bab00b1a295e05d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>industrial applications</topic><topic>iterative learning control</topic><topic>Iterative methods</topic><topic>Joining</topic><topic>Learning</topic><topic>multivariable systems</topic><topic>optimization methods</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freeman, C.T.</creatorcontrib><creatorcontrib>Dinh, Thanh V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freeman, C.T.</au><au>Dinh, Thanh V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimentally verified point-to-point iterative learning control for highly coupled systems</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><addtitle>Int. J. Adapt. Control Signal Process</addtitle><date>2015-03</date><risdate>2015</risdate><volume>29</volume><issue>3</issue><spage>302</spage><epage>324</epage><pages>302-324</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>Summary Iterative learning control (ILC) is a well‐established approach for precision tracking control of systems, which perform a repeated tracking task defined over a fixed time interval. Despite a rich theoretical framework accompanied by a wide array of application studies, comparatively little attention has been paid to the case of multiple input, multiple output (MIMO) systems. Here, the presence of interacting dynamics often correlates with reduced performance. This article focuses on a general class of linear ILC algorithms and establishes links between interaction dynamics and reduced robustness to modeling uncertainty, and slower convergence. It then shows how these and other limitations can be addressed by relaxing the tracking requirement to include only a subset of time points along the time duration. This is the first analysis to show how so‐called ‘point‐to‐point’ ILC can address performance limitations associated with highly coupled systems. Theoretical observations are tested using a novel MIMO experimental test facility, which permits both exogenous disturbance injection and a variable level of coupling between input and output pairs. Results compare experimental observations with theoretical predictions over a wide range of interaction levels and with varying levels of injected noise. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/acs.2472</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6327
ispartof International journal of adaptive control and signal processing, 2015-03, Vol.29 (3), p.302-324
issn 0890-6327
1099-1115
language eng
recordid cdi_proquest_miscellaneous_1677914036
source Wiley Journals
subjects Algorithms
Arrays
Control systems
Dynamical systems
Dynamics
industrial applications
iterative learning control
Iterative methods
Joining
Learning
multivariable systems
optimization methods
Tracking
title Experimentally verified point-to-point iterative learning control for highly coupled systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimentally%20verified%20point-to-point%20iterative%20learning%20control%20for%20highly%20coupled%20systems&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=Freeman,%20C.T.&rft.date=2015-03&rft.volume=29&rft.issue=3&rft.spage=302&rft.epage=324&rft.pages=302-324&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.2472&rft_dat=%3Cproquest_cross%3E1677914036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660570538&rft_id=info:pmid/&rfr_iscdi=true