A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization

In this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2015-05, Vol.150 (2), p.281-319
Hauptverfasser: Bertsimas, Dimitris, Goyal, Vineet, Lu, Brian Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 2
container_start_page 281
container_title Mathematical programming
container_volume 150
creator Bertsimas, Dimitris
Goyal, Vineet
Lu, Brian Y.
description In this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain parameters (Feige et al. in Lect Notes Comput Sci 4513:439–453, 2007 ). On the other hand, a static solution is a single (here and now) solution that is feasible for all possible realizations of the uncertain parameters and can be computed efficiently for most dynamic optimization problems. We show that for a fairly general class of uncertainty sets, a static solution is optimal for the two-stage adjustable robust linear packing problems. This is highly surprising in view of the usual perception about the conservativeness of static solutions. Furthermore, when a static solution is not optimal for the adjustable robust problem, we give a tight approximation bound on the performance of the static solution that is related to a measure of non-convexity of a transformation of the uncertainty set. We also show that our bound is at least as good (and in many case significantly better) as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in Math Methods Oper Res 77(3):323–343, 2013 ; Bertsimas et al. in Math Oper Res 36(1):24–54, 2011 ).
doi_str_mv 10.1007/s10107-014-0768-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677911035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677911035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6142e9369d5bd648a7c573a028cf1c375107d37f83b03f7bbdc50bdea37b094e3</originalsourceid><addsrcrecordid>eNp1kU9LxDAQxYMouK5-AG8BL16ikyZN2uOy-A8EL3oOaZrudmmbNUmR9dOb0j2I4GmGmd97zPAQuqZwRwHkfaBAQRKgnIAUBTmcoAXlTBAuuDhFC4AsJ7mgcI4uQtgBAGVFsUB-hWO72UZsttprE61vv3Vs3YBdg-PW4r31jfO9HoydRiGmrcHBdeNEBdwOOH45kuYbi3W9G1NXdRZ7V6UWd-1gtcduH9v-6HyJzhrdBXt1rEv08fjwvn4mr29PL-vVKzFcZJEIyjNbMlHWeVULXmhpcsk0ZIVpqGEyT__WTDYFq4A1sqpqk0NVW81kBSW3bIluZ9-9d5-jDVH1bTC26_Rg3RgUFVKWlALLE3rzB9250Q_pukQJziHLCpooOlPGuxC8bdTet732B0VBTSmoOQWVUlBTCuqQNNmsCYkdNtb_cv5X9APow4xz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664402281</pqid></control><display><type>article</type><title>A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Bertsimas, Dimitris ; Goyal, Vineet ; Lu, Brian Y.</creator><creatorcontrib>Bertsimas, Dimitris ; Goyal, Vineet ; Lu, Brian Y.</creatorcontrib><description>In this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain parameters (Feige et al. in Lect Notes Comput Sci 4513:439–453, 2007 ). On the other hand, a static solution is a single (here and now) solution that is feasible for all possible realizations of the uncertain parameters and can be computed efficiently for most dynamic optimization problems. We show that for a fairly general class of uncertainty sets, a static solution is optimal for the two-stage adjustable robust linear packing problems. This is highly surprising in view of the usual perception about the conservativeness of static solutions. Furthermore, when a static solution is not optimal for the adjustable robust problem, we give a tight approximation bound on the performance of the static solution that is related to a measure of non-convexity of a transformation of the uncertainty set. We also show that our bound is at least as good (and in many case significantly better) as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in Math Methods Oper Res 77(3):323–343, 2013 ; Bertsimas et al. in Math Oper Res 36(1):24–54, 2011 ).</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0768-y</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adjustable ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Computation ; Decision making ; Expected values ; Full Length Paper ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Operations research ; Optimization ; Perception ; Revenue management ; Studies ; Theoretical ; Transformations ; Uncertainty</subject><ispartof>Mathematical programming, 2015-05, Vol.150 (2), p.281-319</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6142e9369d5bd648a7c573a028cf1c375107d37f83b03f7bbdc50bdea37b094e3</citedby><cites>FETCH-LOGICAL-c462t-6142e9369d5bd648a7c573a028cf1c375107d37f83b03f7bbdc50bdea37b094e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-014-0768-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-014-0768-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bertsimas, Dimitris</creatorcontrib><creatorcontrib>Goyal, Vineet</creatorcontrib><creatorcontrib>Lu, Brian Y.</creatorcontrib><title>A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain parameters (Feige et al. in Lect Notes Comput Sci 4513:439–453, 2007 ). On the other hand, a static solution is a single (here and now) solution that is feasible for all possible realizations of the uncertain parameters and can be computed efficiently for most dynamic optimization problems. We show that for a fairly general class of uncertainty sets, a static solution is optimal for the two-stage adjustable robust linear packing problems. This is highly surprising in view of the usual perception about the conservativeness of static solutions. Furthermore, when a static solution is not optimal for the adjustable robust problem, we give a tight approximation bound on the performance of the static solution that is related to a measure of non-convexity of a transformation of the uncertainty set. We also show that our bound is at least as good (and in many case significantly better) as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in Math Methods Oper Res 77(3):323–343, 2013 ; Bertsimas et al. in Math Oper Res 36(1):24–54, 2011 ).</description><subject>Adjustable</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Computation</subject><subject>Decision making</subject><subject>Expected values</subject><subject>Full Length Paper</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Perception</subject><subject>Revenue management</subject><subject>Studies</subject><subject>Theoretical</subject><subject>Transformations</subject><subject>Uncertainty</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9LxDAQxYMouK5-AG8BL16ikyZN2uOy-A8EL3oOaZrudmmbNUmR9dOb0j2I4GmGmd97zPAQuqZwRwHkfaBAQRKgnIAUBTmcoAXlTBAuuDhFC4AsJ7mgcI4uQtgBAGVFsUB-hWO72UZsttprE61vv3Vs3YBdg-PW4r31jfO9HoydRiGmrcHBdeNEBdwOOH45kuYbi3W9G1NXdRZ7V6UWd-1gtcduH9v-6HyJzhrdBXt1rEv08fjwvn4mr29PL-vVKzFcZJEIyjNbMlHWeVULXmhpcsk0ZIVpqGEyT__WTDYFq4A1sqpqk0NVW81kBSW3bIluZ9-9d5-jDVH1bTC26_Rg3RgUFVKWlALLE3rzB9250Q_pukQJziHLCpooOlPGuxC8bdTet732B0VBTSmoOQWVUlBTCuqQNNmsCYkdNtb_cv5X9APow4xz</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bertsimas, Dimitris</creator><creator>Goyal, Vineet</creator><creator>Lu, Brian Y.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150501</creationdate><title>A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization</title><author>Bertsimas, Dimitris ; Goyal, Vineet ; Lu, Brian Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6142e9369d5bd648a7c573a028cf1c375107d37f83b03f7bbdc50bdea37b094e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjustable</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Computation</topic><topic>Decision making</topic><topic>Expected values</topic><topic>Full Length Paper</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Perception</topic><topic>Revenue management</topic><topic>Studies</topic><topic>Theoretical</topic><topic>Transformations</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertsimas, Dimitris</creatorcontrib><creatorcontrib>Goyal, Vineet</creatorcontrib><creatorcontrib>Lu, Brian Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertsimas, Dimitris</au><au>Goyal, Vineet</au><au>Lu, Brian Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>150</volume><issue>2</issue><spage>281</spage><epage>319</epage><pages>281-319</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>In this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain parameters (Feige et al. in Lect Notes Comput Sci 4513:439–453, 2007 ). On the other hand, a static solution is a single (here and now) solution that is feasible for all possible realizations of the uncertain parameters and can be computed efficiently for most dynamic optimization problems. We show that for a fairly general class of uncertainty sets, a static solution is optimal for the two-stage adjustable robust linear packing problems. This is highly surprising in view of the usual perception about the conservativeness of static solutions. Furthermore, when a static solution is not optimal for the adjustable robust problem, we give a tight approximation bound on the performance of the static solution that is related to a measure of non-convexity of a transformation of the uncertainty set. We also show that our bound is at least as good (and in many case significantly better) as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in Math Methods Oper Res 77(3):323–343, 2013 ; Bertsimas et al. in Math Oper Res 36(1):24–54, 2011 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0768-y</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2015-05, Vol.150 (2), p.281-319
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_1677911035
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Adjustable
Approximation
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Computation
Decision making
Expected values
Full Length Paper
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Operations research
Optimization
Perception
Revenue management
Studies
Theoretical
Transformations
Uncertainty
title A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tight%20characterization%20of%20the%20performance%20of%20static%20solutions%20in%20two-stage%20adjustable%20robust%20linear%20optimization&rft.jtitle=Mathematical%20programming&rft.au=Bertsimas,%20Dimitris&rft.date=2015-05-01&rft.volume=150&rft.issue=2&rft.spage=281&rft.epage=319&rft.pages=281-319&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0768-y&rft_dat=%3Cproquest_cross%3E1677911035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664402281&rft_id=info:pmid/&rfr_iscdi=true