Improving estimates of critical lower percentiles by induced censoring
In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2014-03, Vol.123, p.47-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Reliability engineering & system safety |
container_volume | 123 |
creator | Edwards, David J. Guess, Frank M. León, Ramón V. Young, Timothy M. Crookston, Kevin A. |
description | In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice. |
doi_str_mv | 10.1016/j.ress.2013.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677906869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832013002779</els_id><sourcerecordid>1534857246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</originalsourceid><addsrcrecordid>eNqNUU1LxDAQDaLguvoHPPUieOk6aZM0AS8ifiwIXvQc2slUsnTbNemu-O_NuotH9TTw5r03w3uMnXOYceDqajELFOOsAF4mYAbAD9iE68rkoEt1yCZgJM91WcAxO4lxAQDCyGrC7ufLVRg2vn_LKI5-WY8Us6HNMPjRY91l3fBBIVtRQOpH36Vt85n53q2RXJawOIQkPmVHbd1FOtvPKXu9v3u5fcyfnh_mtzdPOYrCjLlDLR2WvKkM1s6Ak4gOStlAQVqaSgklhELZSAnKiVZVhGhEIxpOHJu2nLLLnW96-n2dPrZLH5G6ru5pWEfLVVUZUFqZv6myFFpWhVD_oCZfwc23a7GjYhhiDNTaVUiphU_LwW6rsAu7rcJuq9hiqYokutj71zFl2oa6Rx9_lIUutZDfvOsdj1KEG0_BRvTUp6R9IBytG_xvZ74A3zufFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516741969</pqid></control><display><type>article</type><title>Improving estimates of critical lower percentiles by induced censoring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</creator><creatorcontrib>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</creatorcontrib><description>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2013.10.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aging (artificial) ; Aging period ; Applied sciences ; Bathtub curve ; Bias ; Estimates ; Exact sciences and technology ; Failure rates ; Lower percentile estimation ; Mean square values ; Model misspecification ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Reliability ; Reliability theory. Replacement problems ; Roots ; Simulation ; Weibull</subject><ispartof>Reliability engineering & system safety, 2014-03, Vol.123, p.47-56</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</citedby><cites>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2013.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28384501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, David J.</creatorcontrib><creatorcontrib>Guess, Frank M.</creatorcontrib><creatorcontrib>León, Ramón V.</creatorcontrib><creatorcontrib>Young, Timothy M.</creatorcontrib><creatorcontrib>Crookston, Kevin A.</creatorcontrib><title>Improving estimates of critical lower percentiles by induced censoring</title><title>Reliability engineering & system safety</title><description>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</description><subject>Aging (artificial)</subject><subject>Aging period</subject><subject>Applied sciences</subject><subject>Bathtub curve</subject><subject>Bias</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Failure rates</subject><subject>Lower percentile estimation</subject><subject>Mean square values</subject><subject>Model misspecification</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Reliability theory. Replacement problems</subject><subject>Roots</subject><subject>Simulation</subject><subject>Weibull</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LxDAQDaLguvoHPPUieOk6aZM0AS8ifiwIXvQc2slUsnTbNemu-O_NuotH9TTw5r03w3uMnXOYceDqajELFOOsAF4mYAbAD9iE68rkoEt1yCZgJM91WcAxO4lxAQDCyGrC7ufLVRg2vn_LKI5-WY8Us6HNMPjRY91l3fBBIVtRQOpH36Vt85n53q2RXJawOIQkPmVHbd1FOtvPKXu9v3u5fcyfnh_mtzdPOYrCjLlDLR2WvKkM1s6Ak4gOStlAQVqaSgklhELZSAnKiVZVhGhEIxpOHJu2nLLLnW96-n2dPrZLH5G6ru5pWEfLVVUZUFqZv6myFFpWhVD_oCZfwc23a7GjYhhiDNTaVUiphU_LwW6rsAu7rcJuq9hiqYokutj71zFl2oa6Rx9_lIUutZDfvOsdj1KEG0_BRvTUp6R9IBytG_xvZ74A3zufFg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Edwards, David J.</creator><creator>Guess, Frank M.</creator><creator>León, Ramón V.</creator><creator>Young, Timothy M.</creator><creator>Crookston, Kevin A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Improving estimates of critical lower percentiles by induced censoring</title><author>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aging (artificial)</topic><topic>Aging period</topic><topic>Applied sciences</topic><topic>Bathtub curve</topic><topic>Bias</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Failure rates</topic><topic>Lower percentile estimation</topic><topic>Mean square values</topic><topic>Model misspecification</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Reliability theory. Replacement problems</topic><topic>Roots</topic><topic>Simulation</topic><topic>Weibull</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, David J.</creatorcontrib><creatorcontrib>Guess, Frank M.</creatorcontrib><creatorcontrib>León, Ramón V.</creatorcontrib><creatorcontrib>Young, Timothy M.</creatorcontrib><creatorcontrib>Crookston, Kevin A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, David J.</au><au>Guess, Frank M.</au><au>León, Ramón V.</au><au>Young, Timothy M.</au><au>Crookston, Kevin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving estimates of critical lower percentiles by induced censoring</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>123</volume><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2013.10.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2014-03, Vol.123, p.47-56 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677906869 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aging (artificial) Aging period Applied sciences Bathtub curve Bias Estimates Exact sciences and technology Failure rates Lower percentile estimation Mean square values Model misspecification Operational research and scientific management Operational research. Management science Optimization Reliability Reliability theory. Replacement problems Roots Simulation Weibull |
title | Improving estimates of critical lower percentiles by induced censoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20estimates%20of%20critical%20lower%20percentiles%20by%20induced%20censoring&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Edwards,%20David%20J.&rft.date=2014-03-01&rft.volume=123&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2013.10.001&rft_dat=%3Cproquest_cross%3E1534857246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516741969&rft_id=info:pmid/&rft_els_id=S0951832013002779&rfr_iscdi=true |