Improving estimates of critical lower percentiles by induced censoring

In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2014-03, Vol.123, p.47-56
Hauptverfasser: Edwards, David J., Guess, Frank M., León, Ramón V., Young, Timothy M., Crookston, Kevin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 47
container_title Reliability engineering & system safety
container_volume 123
creator Edwards, David J.
Guess, Frank M.
León, Ramón V.
Young, Timothy M.
Crookston, Kevin A.
description In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.
doi_str_mv 10.1016/j.ress.2013.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677906869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832013002779</els_id><sourcerecordid>1534857246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</originalsourceid><addsrcrecordid>eNqNUU1LxDAQDaLguvoHPPUieOk6aZM0AS8ifiwIXvQc2slUsnTbNemu-O_NuotH9TTw5r03w3uMnXOYceDqajELFOOsAF4mYAbAD9iE68rkoEt1yCZgJM91WcAxO4lxAQDCyGrC7ufLVRg2vn_LKI5-WY8Us6HNMPjRY91l3fBBIVtRQOpH36Vt85n53q2RXJawOIQkPmVHbd1FOtvPKXu9v3u5fcyfnh_mtzdPOYrCjLlDLR2WvKkM1s6Ak4gOStlAQVqaSgklhELZSAnKiVZVhGhEIxpOHJu2nLLLnW96-n2dPrZLH5G6ru5pWEfLVVUZUFqZv6myFFpWhVD_oCZfwc23a7GjYhhiDNTaVUiphU_LwW6rsAu7rcJuq9hiqYokutj71zFl2oa6Rx9_lIUutZDfvOsdj1KEG0_BRvTUp6R9IBytG_xvZ74A3zufFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516741969</pqid></control><display><type>article</type><title>Improving estimates of critical lower percentiles by induced censoring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</creator><creatorcontrib>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</creatorcontrib><description>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2013.10.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aging (artificial) ; Aging period ; Applied sciences ; Bathtub curve ; Bias ; Estimates ; Exact sciences and technology ; Failure rates ; Lower percentile estimation ; Mean square values ; Model misspecification ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Reliability ; Reliability theory. Replacement problems ; Roots ; Simulation ; Weibull</subject><ispartof>Reliability engineering &amp; system safety, 2014-03, Vol.123, p.47-56</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</citedby><cites>FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2013.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28384501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, David J.</creatorcontrib><creatorcontrib>Guess, Frank M.</creatorcontrib><creatorcontrib>León, Ramón V.</creatorcontrib><creatorcontrib>Young, Timothy M.</creatorcontrib><creatorcontrib>Crookston, Kevin A.</creatorcontrib><title>Improving estimates of critical lower percentiles by induced censoring</title><title>Reliability engineering &amp; system safety</title><description>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</description><subject>Aging (artificial)</subject><subject>Aging period</subject><subject>Applied sciences</subject><subject>Bathtub curve</subject><subject>Bias</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Failure rates</subject><subject>Lower percentile estimation</subject><subject>Mean square values</subject><subject>Model misspecification</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Reliability theory. Replacement problems</subject><subject>Roots</subject><subject>Simulation</subject><subject>Weibull</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LxDAQDaLguvoHPPUieOk6aZM0AS8ifiwIXvQc2slUsnTbNemu-O_NuotH9TTw5r03w3uMnXOYceDqajELFOOsAF4mYAbAD9iE68rkoEt1yCZgJM91WcAxO4lxAQDCyGrC7ufLVRg2vn_LKI5-WY8Us6HNMPjRY91l3fBBIVtRQOpH36Vt85n53q2RXJawOIQkPmVHbd1FOtvPKXu9v3u5fcyfnh_mtzdPOYrCjLlDLR2WvKkM1s6Ak4gOStlAQVqaSgklhELZSAnKiVZVhGhEIxpOHJu2nLLLnW96-n2dPrZLH5G6ru5pWEfLVVUZUFqZv6myFFpWhVD_oCZfwc23a7GjYhhiDNTaVUiphU_LwW6rsAu7rcJuq9hiqYokutj71zFl2oa6Rx9_lIUutZDfvOsdj1KEG0_BRvTUp6R9IBytG_xvZ74A3zufFg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Edwards, David J.</creator><creator>Guess, Frank M.</creator><creator>León, Ramón V.</creator><creator>Young, Timothy M.</creator><creator>Crookston, Kevin A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Improving estimates of critical lower percentiles by induced censoring</title><author>Edwards, David J. ; Guess, Frank M. ; León, Ramón V. ; Young, Timothy M. ; Crookston, Kevin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-dc85dc31b79cad90d5ccd035b02e8597646446c5b5506d4f67ecc94b4b1e1cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aging (artificial)</topic><topic>Aging period</topic><topic>Applied sciences</topic><topic>Bathtub curve</topic><topic>Bias</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Failure rates</topic><topic>Lower percentile estimation</topic><topic>Mean square values</topic><topic>Model misspecification</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Reliability theory. Replacement problems</topic><topic>Roots</topic><topic>Simulation</topic><topic>Weibull</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, David J.</creatorcontrib><creatorcontrib>Guess, Frank M.</creatorcontrib><creatorcontrib>León, Ramón V.</creatorcontrib><creatorcontrib>Young, Timothy M.</creatorcontrib><creatorcontrib>Crookston, Kevin A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, David J.</au><au>Guess, Frank M.</au><au>León, Ramón V.</au><au>Young, Timothy M.</au><au>Crookston, Kevin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving estimates of critical lower percentiles by induced censoring</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>123</volume><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>In this article, we present an approach based on induced censoring for improving the estimation of critical lower percentiles. We validate this technique via simulation results and practical industrial insights. Data from product components that have at least two aging periods (e.g., bathtub failure rate) is investigated. When such data are improperly fit by certain reliability distributions, estimates of lower percentiles are impacted by longer-lasting failures, resulting in larger root mean square errors (RMSE) and bias. In lieu of utilizing a more complex bathtub model, we propose induced right censoring of data at various points to substantially reduce RMSE and bias of lower percentile estimates. A technique for finding optimal or near optimal censoring points is discussed and two real world examples illustrate how this works in practice.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2013.10.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2014-03, Vol.123, p.47-56
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_1677906869
source Elsevier ScienceDirect Journals Complete
subjects Aging (artificial)
Aging period
Applied sciences
Bathtub curve
Bias
Estimates
Exact sciences and technology
Failure rates
Lower percentile estimation
Mean square values
Model misspecification
Operational research and scientific management
Operational research. Management science
Optimization
Reliability
Reliability theory. Replacement problems
Roots
Simulation
Weibull
title Improving estimates of critical lower percentiles by induced censoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20estimates%20of%20critical%20lower%20percentiles%20by%20induced%20censoring&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Edwards,%20David%20J.&rft.date=2014-03-01&rft.volume=123&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2013.10.001&rft_dat=%3Cproquest_cross%3E1534857246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516741969&rft_id=info:pmid/&rft_els_id=S0951832013002779&rfr_iscdi=true