A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity

Polymer electrolyte fuel cells operating at elevated temperature and low relative humidity (RH) have been investigated by utilizing a polyoxometalate coupled graphene oxide–Nafion membrane. A phosphotungstic acid (PW) coupled graphene oxide–Nafion (Nafion/PW-mGO) membrane showed enhanced proton cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (15), p.8148-8155
Hauptverfasser: Kim, Yong, Ketpang, Kriangsak, Jaritphun, Shayapat, Park, Jun Seo, Shanmugam, Sangaraju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8155
container_issue 15
container_start_page 8148
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Kim, Yong
Ketpang, Kriangsak
Jaritphun, Shayapat
Park, Jun Seo
Shanmugam, Sangaraju
description Polymer electrolyte fuel cells operating at elevated temperature and low relative humidity (RH) have been investigated by utilizing a polyoxometalate coupled graphene oxide–Nafion membrane. A phosphotungstic acid (PW) coupled graphene oxide–Nafion (Nafion/PW-mGO) membrane showed enhanced proton conductivity compared with pristine and recast Nafion membranes. The Nafion/PW-mGO hybrid membrane exhibited a maximum power density of 841 mW cm −2 , whereas the pristine Nafion membrane showed a power density of 210 mW cm −2 operated at 80 °C under 20% RH. In comparison, our hybrid membrane showed a 4-fold higher maximum fuel cell power density when operated at 80 °C under 20% RH, than that of a state-of-the-art pristine membrane (Nafion-212). The remarkably enhanced performance of the Nafion/PW-mGO composite membrane was mainly attributed to the reduction of ohmic resistance by the hygroscopic solid acids, which can retain water in their framework through hydrogen bonding with protons at elevated temperatures and facilitates proton transport through the membrane.
doi_str_mv 10.1039/C5TA00182J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677906737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677906737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b5b8c896eba939e066eac31968540c1badd7a8604c41bed8f52def8266eb9ae3</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWGo3PkGWIowm85NJlqX4S9FN90OSudNGMs2YzNTOznfwDX0SUyp6NvfA_TgcDkKXlNxQkonbRbGaE0J5-nyCJikpSFLmgp3-ec7P0SyENxLFCWFCTNBujjtnR7d3LfTSyh6wdkNnocZrL7sNbAG7vanh-_PrRTbGbeO_7VwwkWyhVV5GonEeNwNYrMHagF0HXvZmu8ayx9Z9YA8x2ewAb4bW1KYfL9BZI22A2e-dotX93WrxmCxfH54W82Wi8zzvE1UorrlgoKTIBBDGQOqMCsaLnGiqZF2XkjOS65wqqHlTpDU0PI2cEhKyKbo6xnbevQ8Q-qo14dAxlnZDqCgrS0FYmZURvT6i2rsQPDRV500r_VhRUh3mrf7nzX4Aayhw4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677906737</pqid></control><display><type>article</type><title>A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kim, Yong ; Ketpang, Kriangsak ; Jaritphun, Shayapat ; Park, Jun Seo ; Shanmugam, Sangaraju</creator><creatorcontrib>Kim, Yong ; Ketpang, Kriangsak ; Jaritphun, Shayapat ; Park, Jun Seo ; Shanmugam, Sangaraju</creatorcontrib><description>Polymer electrolyte fuel cells operating at elevated temperature and low relative humidity (RH) have been investigated by utilizing a polyoxometalate coupled graphene oxide–Nafion membrane. A phosphotungstic acid (PW) coupled graphene oxide–Nafion (Nafion/PW-mGO) membrane showed enhanced proton conductivity compared with pristine and recast Nafion membranes. The Nafion/PW-mGO hybrid membrane exhibited a maximum power density of 841 mW cm −2 , whereas the pristine Nafion membrane showed a power density of 210 mW cm −2 operated at 80 °C under 20% RH. In comparison, our hybrid membrane showed a 4-fold higher maximum fuel cell power density when operated at 80 °C under 20% RH, than that of a state-of-the-art pristine membrane (Nafion-212). The remarkably enhanced performance of the Nafion/PW-mGO composite membrane was mainly attributed to the reduction of ohmic resistance by the hygroscopic solid acids, which can retain water in their framework through hydrogen bonding with protons at elevated temperatures and facilitates proton transport through the membrane.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C5TA00182J</identifier><language>eng</language><subject>Density ; Fuel cells ; Graphene ; High temperature ; Hydrogen bonding ; Joining ; Membranes ; Relative humidity</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (15), p.8148-8155</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b5b8c896eba939e066eac31968540c1badd7a8604c41bed8f52def8266eb9ae3</citedby><cites>FETCH-LOGICAL-c444t-b5b8c896eba939e066eac31968540c1badd7a8604c41bed8f52def8266eb9ae3</cites><orcidid>0000-0001-6295-2718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Yong</creatorcontrib><creatorcontrib>Ketpang, Kriangsak</creatorcontrib><creatorcontrib>Jaritphun, Shayapat</creatorcontrib><creatorcontrib>Park, Jun Seo</creatorcontrib><creatorcontrib>Shanmugam, Sangaraju</creatorcontrib><title>A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Polymer electrolyte fuel cells operating at elevated temperature and low relative humidity (RH) have been investigated by utilizing a polyoxometalate coupled graphene oxide–Nafion membrane. A phosphotungstic acid (PW) coupled graphene oxide–Nafion (Nafion/PW-mGO) membrane showed enhanced proton conductivity compared with pristine and recast Nafion membranes. The Nafion/PW-mGO hybrid membrane exhibited a maximum power density of 841 mW cm −2 , whereas the pristine Nafion membrane showed a power density of 210 mW cm −2 operated at 80 °C under 20% RH. In comparison, our hybrid membrane showed a 4-fold higher maximum fuel cell power density when operated at 80 °C under 20% RH, than that of a state-of-the-art pristine membrane (Nafion-212). The remarkably enhanced performance of the Nafion/PW-mGO composite membrane was mainly attributed to the reduction of ohmic resistance by the hygroscopic solid acids, which can retain water in their framework through hydrogen bonding with protons at elevated temperatures and facilitates proton transport through the membrane.</description><subject>Density</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Hydrogen bonding</subject><subject>Joining</subject><subject>Membranes</subject><subject>Relative humidity</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMoWGo3PkGWIowm85NJlqX4S9FN90OSudNGMs2YzNTOznfwDX0SUyp6NvfA_TgcDkKXlNxQkonbRbGaE0J5-nyCJikpSFLmgp3-ec7P0SyENxLFCWFCTNBujjtnR7d3LfTSyh6wdkNnocZrL7sNbAG7vanh-_PrRTbGbeO_7VwwkWyhVV5GonEeNwNYrMHagF0HXvZmu8ayx9Z9YA8x2ewAb4bW1KYfL9BZI22A2e-dotX93WrxmCxfH54W82Wi8zzvE1UorrlgoKTIBBDGQOqMCsaLnGiqZF2XkjOS65wqqHlTpDU0PI2cEhKyKbo6xnbevQ8Q-qo14dAxlnZDqCgrS0FYmZURvT6i2rsQPDRV500r_VhRUh3mrf7nzX4Aayhw4g</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kim, Yong</creator><creator>Ketpang, Kriangsak</creator><creator>Jaritphun, Shayapat</creator><creator>Park, Jun Seo</creator><creator>Shanmugam, Sangaraju</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6295-2718</orcidid></search><sort><creationdate>20150101</creationdate><title>A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity</title><author>Kim, Yong ; Ketpang, Kriangsak ; Jaritphun, Shayapat ; Park, Jun Seo ; Shanmugam, Sangaraju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b5b8c896eba939e066eac31968540c1badd7a8604c41bed8f52def8266eb9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Density</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Hydrogen bonding</topic><topic>Joining</topic><topic>Membranes</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong</creatorcontrib><creatorcontrib>Ketpang, Kriangsak</creatorcontrib><creatorcontrib>Jaritphun, Shayapat</creatorcontrib><creatorcontrib>Park, Jun Seo</creatorcontrib><creatorcontrib>Shanmugam, Sangaraju</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong</au><au>Ketpang, Kriangsak</au><au>Jaritphun, Shayapat</au><au>Park, Jun Seo</au><au>Shanmugam, Sangaraju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>15</issue><spage>8148</spage><epage>8155</epage><pages>8148-8155</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Polymer electrolyte fuel cells operating at elevated temperature and low relative humidity (RH) have been investigated by utilizing a polyoxometalate coupled graphene oxide–Nafion membrane. A phosphotungstic acid (PW) coupled graphene oxide–Nafion (Nafion/PW-mGO) membrane showed enhanced proton conductivity compared with pristine and recast Nafion membranes. The Nafion/PW-mGO hybrid membrane exhibited a maximum power density of 841 mW cm −2 , whereas the pristine Nafion membrane showed a power density of 210 mW cm −2 operated at 80 °C under 20% RH. In comparison, our hybrid membrane showed a 4-fold higher maximum fuel cell power density when operated at 80 °C under 20% RH, than that of a state-of-the-art pristine membrane (Nafion-212). The remarkably enhanced performance of the Nafion/PW-mGO composite membrane was mainly attributed to the reduction of ohmic resistance by the hygroscopic solid acids, which can retain water in their framework through hydrogen bonding with protons at elevated temperatures and facilitates proton transport through the membrane.</abstract><doi>10.1039/C5TA00182J</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6295-2718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (15), p.8148-8155
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1677906737
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Density
Fuel cells
Graphene
High temperature
Hydrogen bonding
Joining
Membranes
Relative humidity
title A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20polyoxometalate%20coupled%20graphene%20oxide%E2%80%93Nafion%20composite%20membrane%20for%20fuel%20cells%20operating%20at%20low%20relative%20humidity&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Yong&rft.date=2015-01-01&rft.volume=3&rft.issue=15&rft.spage=8148&rft.epage=8155&rft.pages=8148-8155&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C5TA00182J&rft_dat=%3Cproquest_cross%3E1677906737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677906737&rft_id=info:pmid/&rfr_iscdi=true