Finite-amplitude acoustic-gravity waves: exact solutions
We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-03, Vol.767, p.52-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | |
container_start_page | 52 |
container_title | Journal of fluid mechanics |
container_volume | 767 |
creator | Godin, Oleg A. |
description | We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres. |
doi_str_mv | 10.1017/jfm.2015.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677905992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_40</cupid><sourcerecordid>1677905992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-6da5c51b4593cd6558436c847e4d016881c9384dbdd2a6451e4bc1e5c37edb223</originalsourceid><addsrcrecordid>eNqN0M1KAzEUBeAgCtbqyhcYcCNIam4mf-NOilWh4EbXIZOkJWWmU5OZat_eFLsQceHqbj4u5xyELoFMgIC8XS3aCSXAJ4wcoREwUWEpGD9GI0IoxQCUnKKzlFaEQEkqOUJqFtah99i0myb0g_OFsd2Q-mDxMppt6HfFh9n6dFf4T2P7InXN0Idunc7RycI0yV8c7hi9zR5ep094_vL4PL2fY8tK3mPhDLccasar0jrBuWKlsIpJzxwBoRTYqlTM1c5Rk6OCZ7UFz20pvaspLcfo-vvvJnbvg0-9bkOyvmnM2uegGoSUFeFV9R8qGM3NJWR69YuuuiGuc5GsOCdKSkWyuvlWNnYpRb_QmxhaE3caiN4PrvPgej-4ZnuND9q0dQxu6X88_cN_AeGMgJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655087780</pqid></control><display><type>article</type><title>Finite-amplitude acoustic-gravity waves: exact solutions</title><source>Cambridge University Press Journals Complete</source><creator>Godin, Oleg A.</creator><creatorcontrib>Godin, Oleg A.</creatorcontrib><description>We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.40</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Compressibility ; Constants ; Exact solutions ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Gravity ; Gravity waves ; Hydrodynamics ; Incompressible flow ; Nonlinearity ; Oceans ; Propagation ; Wave motion</subject><ispartof>Journal of fluid mechanics, 2015-03, Vol.767, p.52-64</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-6da5c51b4593cd6558436c847e4d016881c9384dbdd2a6451e4bc1e5c37edb223</citedby><cites>FETCH-LOGICAL-c435t-6da5c51b4593cd6558436c847e4d016881c9384dbdd2a6451e4bc1e5c37edb223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015000403/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Godin, Oleg A.</creatorcontrib><title>Finite-amplitude acoustic-gravity waves: exact solutions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres.</description><subject>Compressibility</subject><subject>Constants</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Gravity</subject><subject>Gravity waves</subject><subject>Hydrodynamics</subject><subject>Incompressible flow</subject><subject>Nonlinearity</subject><subject>Oceans</subject><subject>Propagation</subject><subject>Wave motion</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0M1KAzEUBeAgCtbqyhcYcCNIam4mf-NOilWh4EbXIZOkJWWmU5OZat_eFLsQceHqbj4u5xyELoFMgIC8XS3aCSXAJ4wcoREwUWEpGD9GI0IoxQCUnKKzlFaEQEkqOUJqFtah99i0myb0g_OFsd2Q-mDxMppt6HfFh9n6dFf4T2P7InXN0Idunc7RycI0yV8c7hi9zR5ep094_vL4PL2fY8tK3mPhDLccasar0jrBuWKlsIpJzxwBoRTYqlTM1c5Rk6OCZ7UFz20pvaspLcfo-vvvJnbvg0-9bkOyvmnM2uegGoSUFeFV9R8qGM3NJWR69YuuuiGuc5GsOCdKSkWyuvlWNnYpRb_QmxhaE3caiN4PrvPgej-4ZnuND9q0dQxu6X88_cN_AeGMgJI</recordid><startdate>20150325</startdate><enddate>20150325</enddate><creator>Godin, Oleg A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150325</creationdate><title>Finite-amplitude acoustic-gravity waves: exact solutions</title><author>Godin, Oleg A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-6da5c51b4593cd6558436c847e4d016881c9384dbdd2a6451e4bc1e5c37edb223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressibility</topic><topic>Constants</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Gravity</topic><topic>Gravity waves</topic><topic>Hydrodynamics</topic><topic>Incompressible flow</topic><topic>Nonlinearity</topic><topic>Oceans</topic><topic>Propagation</topic><topic>Wave motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godin, Oleg A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godin, Oleg A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-amplitude acoustic-gravity waves: exact solutions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-03-25</date><risdate>2015</risdate><volume>767</volume><spage>52</spage><epage>64</epage><pages>52-64</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.40</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-03, Vol.767, p.52-64 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677905992 |
source | Cambridge University Press Journals Complete |
subjects | Compressibility Constants Exact solutions Fluid dynamics Fluid flow Fluid mechanics Fluids Gravity Gravity waves Hydrodynamics Incompressible flow Nonlinearity Oceans Propagation Wave motion |
title | Finite-amplitude acoustic-gravity waves: exact solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-amplitude%20acoustic-gravity%20waves:%20exact%20solutions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Godin,%20Oleg%C2%A0A.&rft.date=2015-03-25&rft.volume=767&rft.spage=52&rft.epage=64&rft.pages=52-64&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.40&rft_dat=%3Cproquest_cross%3E1677905992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655087780&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_40&rfr_iscdi=true |