On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs
We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2015-05, Vol.150 (2), p.459-489 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 2 |
container_start_page | 459 |
container_title | Mathematical programming |
container_volume | 150 |
creator | Awate, Yogesh Cornuéjols, Gérard Guenin, Bertrand Tunçel, Levent |
description | We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of
1.5
of the integer hull, and provide examples showing that the approximation factor is not less than
1.125
. There is no fixed approximation ratio for split or Type 1 triangle inequalities however. |
doi_str_mv | 10.1007/s10107-014-0775-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677902268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677902268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMoOK7-AG8BL15aq7rz0XOUxVVhYS96DumkMpulOz0madEF_7uZHQ-y4Cl1eJ63Qr2MvUZ4hwD6fUFA0B2g6EBr2d0_YTsUg-qEEuop2wH0spMK4Tl7UcodAOAwjjv2-ybxeks802xr_EG81EzpUG_5GniwS5wjldMcU6VcyNW4Ju62WrjNscR04CGvCz_amB-4aqeZ7MbdmlqUbVppLl_iT_IPIQfK_JjXQ7ZLecmeBTsXevX3vWDfrj5-vfzcXd98-nL54bpzope1k4Pz-4Dee-gVkFeI4yTFZMV-Em6U2vd-CHrwYdhL1ALQTgiKRjfZMVgcLtjbc25b_H2jUs0Si6N5tonWrRhUWu-h79XY0DeP0Lt1y6n9rlFKCOhByUbhmXJ5LSVTMMccF5t_GQRzKsScCzGtEHMqxNw3pz87pbGpneGf5P9KfwDyR5CI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664402065</pqid></control><display><type>article</type><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><source>Springer Online Journals Complete</source><source>Business Source Complete</source><creator>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creator><creatorcontrib>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creatorcontrib><description>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of
1.5
of the integer hull, and provide examples showing that the approximation factor is not less than
1.125
. There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0775-z</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Hulls ; Hulls (structures) ; Inequalities ; Inequality ; Integers ; Linear programming ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Mixed integer ; Numerical Analysis ; Strength ; Studies ; Theoretical ; Triangles</subject><ispartof>Mathematical programming, 2015-05, Vol.150 (2), p.459-489</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</citedby><cites>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-014-0775-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-014-0775-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Awate, Yogesh</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of
1.5
of the integer hull, and provide examples showing that the approximation factor is not less than
1.125
. There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</description><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Integers</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Mixed integer</subject><subject>Numerical Analysis</subject><subject>Strength</subject><subject>Studies</subject><subject>Theoretical</subject><subject>Triangles</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhoMoOK7-AG8BL15aq7rz0XOUxVVhYS96DumkMpulOz0madEF_7uZHQ-y4Cl1eJ63Qr2MvUZ4hwD6fUFA0B2g6EBr2d0_YTsUg-qEEuop2wH0spMK4Tl7UcodAOAwjjv2-ybxeks802xr_EG81EzpUG_5GniwS5wjldMcU6VcyNW4Ju62WrjNscR04CGvCz_amB-4aqeZ7MbdmlqUbVppLl_iT_IPIQfK_JjXQ7ZLecmeBTsXevX3vWDfrj5-vfzcXd98-nL54bpzope1k4Pz-4Dee-gVkFeI4yTFZMV-Em6U2vd-CHrwYdhL1ALQTgiKRjfZMVgcLtjbc25b_H2jUs0Si6N5tonWrRhUWu-h79XY0DeP0Lt1y6n9rlFKCOhByUbhmXJ5LSVTMMccF5t_GQRzKsScCzGtEHMqxNw3pz87pbGpneGf5P9KfwDyR5CI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Awate, Yogesh</creator><creator>Cornuéjols, Gérard</creator><creator>Guenin, Bertrand</creator><creator>Tunçel, Levent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150501</creationdate><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><author>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Integers</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Mixed integer</topic><topic>Numerical Analysis</topic><topic>Strength</topic><topic>Studies</topic><topic>Theoretical</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awate, Yogesh</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awate, Yogesh</au><au>Cornuéjols, Gérard</au><au>Guenin, Bertrand</au><au>Tunçel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>150</volume><issue>2</issue><spage>459</spage><epage>489</epage><pages>459-489</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of
1.5
of the integer hull, and provide examples showing that the approximation factor is not less than
1.125
. There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0775-z</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2015-05, Vol.150 (2), p.459-489 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677902268 |
source | Springer Online Journals Complete; Business Source Complete |
subjects | Approximation Calculus of Variations and Optimal Control Optimization Combinatorics Full Length Paper Hulls Hulls (structures) Inequalities Inequality Integers Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Strength Studies Theoretical Triangles |
title | On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relative%20strength%20of%20families%20of%20intersection%20cuts%20arising%20from%20pairs%20of%20tableau%20constraints%20in%20mixed%20integer%20programs&rft.jtitle=Mathematical%20programming&rft.au=Awate,%20Yogesh&rft.date=2015-05-01&rft.volume=150&rft.issue=2&rft.spage=459&rft.epage=489&rft.pages=459-489&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0775-z&rft_dat=%3Cproquest_cross%3E1677902268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664402065&rft_id=info:pmid/&rfr_iscdi=true |