On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs

We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2015-05, Vol.150 (2), p.459-489
Hauptverfasser: Awate, Yogesh, Cornuéjols, Gérard, Guenin, Bertrand, Tunçel, Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 2
container_start_page 459
container_title Mathematical programming
container_volume 150
creator Awate, Yogesh
Cornuéjols, Gérard
Guenin, Bertrand
Tunçel, Levent
description We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of 1.5 of the integer hull, and provide examples showing that the approximation factor is not less than 1.125 . There is no fixed approximation ratio for split or Type 1 triangle inequalities however.
doi_str_mv 10.1007/s10107-014-0775-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677902268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677902268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMoOK7-AG8BL15aq7rz0XOUxVVhYS96DumkMpulOz0madEF_7uZHQ-y4Cl1eJ63Qr2MvUZ4hwD6fUFA0B2g6EBr2d0_YTsUg-qEEuop2wH0spMK4Tl7UcodAOAwjjv2-ybxeks802xr_EG81EzpUG_5GniwS5wjldMcU6VcyNW4Ju62WrjNscR04CGvCz_amB-4aqeZ7MbdmlqUbVppLl_iT_IPIQfK_JjXQ7ZLecmeBTsXevX3vWDfrj5-vfzcXd98-nL54bpzope1k4Pz-4Dee-gVkFeI4yTFZMV-Em6U2vd-CHrwYdhL1ALQTgiKRjfZMVgcLtjbc25b_H2jUs0Si6N5tonWrRhUWu-h79XY0DeP0Lt1y6n9rlFKCOhByUbhmXJ5LSVTMMccF5t_GQRzKsScCzGtEHMqxNw3pz87pbGpneGf5P9KfwDyR5CI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664402065</pqid></control><display><type>article</type><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><source>Springer Online Journals Complete</source><source>Business Source Complete</source><creator>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creator><creatorcontrib>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</creatorcontrib><description>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of 1.5 of the integer hull, and provide examples showing that the approximation factor is not less than 1.125 . There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0775-z</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Hulls ; Hulls (structures) ; Inequalities ; Inequality ; Integers ; Linear programming ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Mixed integer ; Numerical Analysis ; Strength ; Studies ; Theoretical ; Triangles</subject><ispartof>Mathematical programming, 2015-05, Vol.150 (2), p.459-489</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</citedby><cites>FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-014-0775-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-014-0775-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Awate, Yogesh</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of 1.5 of the integer hull, and provide examples showing that the approximation factor is not less than 1.125 . There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</description><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Integers</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Mixed integer</subject><subject>Numerical Analysis</subject><subject>Strength</subject><subject>Studies</subject><subject>Theoretical</subject><subject>Triangles</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhoMoOK7-AG8BL15aq7rz0XOUxVVhYS96DumkMpulOz0madEF_7uZHQ-y4Cl1eJ63Qr2MvUZ4hwD6fUFA0B2g6EBr2d0_YTsUg-qEEuop2wH0spMK4Tl7UcodAOAwjjv2-ybxeks802xr_EG81EzpUG_5GniwS5wjldMcU6VcyNW4Ju62WrjNscR04CGvCz_amB-4aqeZ7MbdmlqUbVppLl_iT_IPIQfK_JjXQ7ZLecmeBTsXevX3vWDfrj5-vfzcXd98-nL54bpzope1k4Pz-4Dee-gVkFeI4yTFZMV-Em6U2vd-CHrwYdhL1ALQTgiKRjfZMVgcLtjbc25b_H2jUs0Si6N5tonWrRhUWu-h79XY0DeP0Lt1y6n9rlFKCOhByUbhmXJ5LSVTMMccF5t_GQRzKsScCzGtEHMqxNw3pz87pbGpneGf5P9KfwDyR5CI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Awate, Yogesh</creator><creator>Cornuéjols, Gérard</creator><creator>Guenin, Bertrand</creator><creator>Tunçel, Levent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150501</creationdate><title>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</title><author>Awate, Yogesh ; Cornuéjols, Gérard ; Guenin, Bertrand ; Tunçel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-53cd9f1ddd0260ed6118b54ba49b4c857d2d3f73df39517401ab106e8cba8fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Integers</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Mixed integer</topic><topic>Numerical Analysis</topic><topic>Strength</topic><topic>Studies</topic><topic>Theoretical</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awate, Yogesh</creatorcontrib><creatorcontrib>Cornuéjols, Gérard</creatorcontrib><creatorcontrib>Guenin, Bertrand</creatorcontrib><creatorcontrib>Tunçel, Levent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awate, Yogesh</au><au>Cornuéjols, Gérard</au><au>Guenin, Bertrand</au><au>Tunçel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>150</volume><issue>2</issue><spage>459</spage><epage>489</epage><pages>459-489</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities, are all within a factor of 1.5 of the integer hull, and provide examples showing that the approximation factor is not less than 1.125 . There is no fixed approximation ratio for split or Type 1 triangle inequalities however.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0775-z</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2015-05, Vol.150 (2), p.459-489
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_1677902268
source Springer Online Journals Complete; Business Source Complete
subjects Approximation
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Full Length Paper
Hulls
Hulls (structures)
Inequalities
Inequality
Integers
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Strength
Studies
Theoretical
Triangles
title On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relative%20strength%20of%20families%20of%20intersection%20cuts%20arising%20from%20pairs%20of%20tableau%20constraints%20in%20mixed%20integer%20programs&rft.jtitle=Mathematical%20programming&rft.au=Awate,%20Yogesh&rft.date=2015-05-01&rft.volume=150&rft.issue=2&rft.spage=459&rft.epage=489&rft.pages=459-489&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0775-z&rft_dat=%3Cproquest_cross%3E1677902268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664402065&rft_id=info:pmid/&rfr_iscdi=true