A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map

In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2015-04, Vol.61 (4), p.627-641
Hauptverfasser: Ni, Qin, Qi, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 627
container_title Journal of global optimization
container_volume 61
creator Ni, Qin
Qi, Liqun
description In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between homogeneous polynomial map and its associated semi-symmetric tensor. Based on this relation a globally and quadratically convergent algorithm is established where the line search is inserted. Some numerical results of this method are reported.
doi_str_mv 10.1007/s10898-014-0209-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677901917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718411728</galeid><sourcerecordid>A718411728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-439cae86d0227c79b06b02fe7412a50d31ce0292ec55e74d9404dbe9212251e73</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpoNskPyA3QS-9OJnR2pZ1XEKbFgK5tGehlcdeBVnaSPbC_vtq6x5KocxhYPS9x0OPsTuEewSQDxmhU10FWFcgQFXdO7bBRm4robB9zzagRFM1APiBfcz5FQBU14gNyzv-tpg-mdlZ4_2Z2xhOlEYKMzd-jMnNh4kPMfHBhd6Fkc8H4t4UIs-cXAFPxi_E48ANDzEEGovXifghTrG8UlwyP0Z_DnFyxvPJHG_Y1WB8pts_-5r9_Prlx-O36vnl6fvj7rmyDeBc1VtlDXVtD0JIK9Ue2j2IgWSNwjTQb9ESCCXINk059qqGut-TEihEgyS31-zz6ntM8W0pefXksiXvze9UGlspFaDCC_rpH_Q1LimUdIVqa9UVx7ZQ9ys1Gk_ahSHOydgyPU2ufBwNrtx3ErsaUYquCHAV2BRzTjToY3KTSWeNoC-96bU3XXrTl970RSNWTS5sGCn9FeW_ol-sgJtu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664982516</pqid></control><display><type>article</type><title>A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map</title><source>Springer Nature - Complete Springer Journals</source><creator>Ni, Qin ; Qi, Liqun</creator><creatorcontrib>Ni, Qin ; Qi, Liqun</creatorcontrib><description>In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between homogeneous polynomial map and its associated semi-symmetric tensor. Based on this relation a globally and quadratically convergent algorithm is established where the line search is inserted. Some numerical results of this method are reported.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-014-0209-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer Science ; Eigenvalues ; Eigenvectors ; Equivalence ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Operations Research/Decision Theory ; Optimization ; Polynomials ; Real Functions ; Studies ; Tensors</subject><ispartof>Journal of global optimization, 2015-04, Vol.61 (4), p.627-641</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-439cae86d0227c79b06b02fe7412a50d31ce0292ec55e74d9404dbe9212251e73</citedby><cites>FETCH-LOGICAL-c501t-439cae86d0227c79b06b02fe7412a50d31ce0292ec55e74d9404dbe9212251e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-014-0209-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-014-0209-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ni, Qin</creatorcontrib><creatorcontrib>Qi, Liqun</creatorcontrib><title>A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between homogeneous polynomial map and its associated semi-symmetric tensor. Based on this relation a globally and quadratically convergent algorithm is established where the line search is inserted. Some numerical results of this method are reported.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equivalence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Real Functions</subject><subject>Studies</subject><subject>Tensors</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFr3DAQhUVpoNskPyA3QS-9OJnR2pZ1XEKbFgK5tGehlcdeBVnaSPbC_vtq6x5KocxhYPS9x0OPsTuEewSQDxmhU10FWFcgQFXdO7bBRm4robB9zzagRFM1APiBfcz5FQBU14gNyzv-tpg-mdlZ4_2Z2xhOlEYKMzd-jMnNh4kPMfHBhd6Fkc8H4t4UIs-cXAFPxi_E48ANDzEEGovXifghTrG8UlwyP0Z_DnFyxvPJHG_Y1WB8pts_-5r9_Prlx-O36vnl6fvj7rmyDeBc1VtlDXVtD0JIK9Ue2j2IgWSNwjTQb9ESCCXINk059qqGut-TEihEgyS31-zz6ntM8W0pefXksiXvze9UGlspFaDCC_rpH_Q1LimUdIVqa9UVx7ZQ9ys1Gk_ahSHOydgyPU2ufBwNrtx3ErsaUYquCHAV2BRzTjToY3KTSWeNoC-96bU3XXrTl970RSNWTS5sGCn9FeW_ol-sgJtu</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Ni, Qin</creator><creator>Qi, Liqun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150401</creationdate><title>A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map</title><author>Ni, Qin ; Qi, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-439cae86d0227c79b06b02fe7412a50d31ce0292ec55e74d9404dbe9212251e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equivalence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Real Functions</topic><topic>Studies</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Qin</creatorcontrib><creatorcontrib>Qi, Liqun</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Qin</au><au>Qi, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>627</spage><epage>641</epage><pages>627-641</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between homogeneous polynomial map and its associated semi-symmetric tensor. Based on this relation a globally and quadratically convergent algorithm is established where the line search is inserted. Some numerical results of this method are reported.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-014-0209-8</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2015-04, Vol.61 (4), p.627-641
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_miscellaneous_1677901917
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computer Science
Eigenvalues
Eigenvectors
Equivalence
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Nonlinear equations
Operations Research/Decision Theory
Optimization
Polynomials
Real Functions
Studies
Tensors
title A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quadratically%20convergent%20algorithm%20for%20finding%20the%20largest%20eigenvalue%20of%20a%20nonnegative%20homogeneous%20polynomial%20map&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Ni,%20Qin&rft.date=2015-04-01&rft.volume=61&rft.issue=4&rft.spage=627&rft.epage=641&rft.pages=627-641&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-014-0209-8&rft_dat=%3Cgale_proqu%3EA718411728%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664982516&rft_id=info:pmid/&rft_galeid=A718411728&rfr_iscdi=true