Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet
Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically stu...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2015-01, Vol.79, p.351-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | |
container_start_page | 351 |
container_title | Energy (Oxford) |
container_volume | 79 |
creator | Dalir, Nemat Dehsara, Mohammad Nourazar, S. Salman |
description | Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically studied. The nanofluid model is considered by using the Brownian motion and thermophoresis effects. The Jeffrey model is used to denote the non-Newtonian fluid. The boundary layer continuity, momentum, energy, and concentration equations are transformed by using appropriate similarity transformations to three nonlinear coupled ordinary differential equations (ODEs). Then, the ODEs are solved by applying an implicit Keller's box numerical algorithm. The influence of various controlling parameters including ratio of relaxation to retardation times, Deborah number, Eckert number, Brownian motion parameter, thermophoresis parameter, and Lewis number on flow, heat transfer, mass transfer, and entropy generation characteristics is examined and discussed. Graphical presentation of the numerical examination is performed to illustrate the influence of various parameters on velocity, temperature, nanoparticles volume fraction, and entropy generation number profiles. The results reveal that the entropy generation number strongly varies by variations in Reynolds number, Prandtl number, Lewis number, and thermophoresis parameter. A comparative study of our numerical results with the results from previous works is also performed which shows excellent agreement.
•Entropy analysis for MHD flow of Jeffrey nanofluid over a stretching sheet is studied.•Effects of various parameters on entropy generation characteristics is investigated.•Comparison of our results with the results of previous works shows excellent agreement.•Entropy generation number strongly varies by Reynolds number and thermophoresis parameter. |
doi_str_mv | 10.1016/j.energy.2014.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677901743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544214012766</els_id><sourcerecordid>1677901743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-39399dc293e6bfc783a46d8e94bc57cf975101666503041621c7ed847e8728363</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhWehifXxD1ywdNMRBgaGjYlp6itN3OiaULi0NFOoQGvm3ztNXRtXd3G_c3LOqapbgmuCCb_f1BAgrYa6wYTVhNS4IWfVBFOOpy1jzUV1mfMGY9x2Uk6qMA8lxd2AdND9kH1GLia01asAJa4Hm6Idgt56g1wfv0fKojXogkrSITtIKDqk0Rs4l2BAQYfo-r23KB7Gn0a5JChm7cMK5TVAua7One4z3Pzeq-rzaf4xe5ku3p9fZ4-LqRkjlimVVEprGkmBL50RHdWM2w4kW5pWGCdFeyzLeYspZoQ3xAiwHRPQiaajnF5VdyffXYpfe8hFbX020Pc6QNxnRbgQEhPB6H9QOqaR8oiyE2pSzDmBU7vktzoNimB1DKQ26rS-Oq6vCFHj-qPs4SSDsfHBQ1LZeAgGrE9girLR_23wA2ivkkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673399993</pqid></control><display><type>article</type><title>Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet</title><source>Elsevier ScienceDirect Journals</source><creator>Dalir, Nemat ; Dehsara, Mohammad ; Nourazar, S. Salman</creator><creatorcontrib>Dalir, Nemat ; Dehsara, Mohammad ; Nourazar, S. Salman</creatorcontrib><description>Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically studied. The nanofluid model is considered by using the Brownian motion and thermophoresis effects. The Jeffrey model is used to denote the non-Newtonian fluid. The boundary layer continuity, momentum, energy, and concentration equations are transformed by using appropriate similarity transformations to three nonlinear coupled ordinary differential equations (ODEs). Then, the ODEs are solved by applying an implicit Keller's box numerical algorithm. The influence of various controlling parameters including ratio of relaxation to retardation times, Deborah number, Eckert number, Brownian motion parameter, thermophoresis parameter, and Lewis number on flow, heat transfer, mass transfer, and entropy generation characteristics is examined and discussed. Graphical presentation of the numerical examination is performed to illustrate the influence of various parameters on velocity, temperature, nanoparticles volume fraction, and entropy generation number profiles. The results reveal that the entropy generation number strongly varies by variations in Reynolds number, Prandtl number, Lewis number, and thermophoresis parameter. A comparative study of our numerical results with the results from previous works is also performed which shows excellent agreement.
•Entropy analysis for MHD flow of Jeffrey nanofluid over a stretching sheet is studied.•Effects of various parameters on entropy generation characteristics is investigated.•Comparison of our results with the results of previous works shows excellent agreement.•Entropy generation number strongly varies by Reynolds number and thermophoresis parameter.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2014.11.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Brownian motion ; Computational fluid dynamics ; Entropy ; Entropy generation ; Forced convection ; Heat transfer ; Laminar MHD flow ; Mass transfer ; Mathematical models ; Nanofluids ; Nanostructure ; non-Newtonian nanofluid ; Stretching ; Thermophoresis</subject><ispartof>Energy (Oxford), 2015-01, Vol.79, p.351-362</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-39399dc293e6bfc783a46d8e94bc57cf975101666503041621c7ed847e8728363</citedby><cites>FETCH-LOGICAL-c442t-39399dc293e6bfc783a46d8e94bc57cf975101666503041621c7ed847e8728363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544214012766$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dalir, Nemat</creatorcontrib><creatorcontrib>Dehsara, Mohammad</creatorcontrib><creatorcontrib>Nourazar, S. Salman</creatorcontrib><title>Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet</title><title>Energy (Oxford)</title><description>Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically studied. The nanofluid model is considered by using the Brownian motion and thermophoresis effects. The Jeffrey model is used to denote the non-Newtonian fluid. The boundary layer continuity, momentum, energy, and concentration equations are transformed by using appropriate similarity transformations to three nonlinear coupled ordinary differential equations (ODEs). Then, the ODEs are solved by applying an implicit Keller's box numerical algorithm. The influence of various controlling parameters including ratio of relaxation to retardation times, Deborah number, Eckert number, Brownian motion parameter, thermophoresis parameter, and Lewis number on flow, heat transfer, mass transfer, and entropy generation characteristics is examined and discussed. Graphical presentation of the numerical examination is performed to illustrate the influence of various parameters on velocity, temperature, nanoparticles volume fraction, and entropy generation number profiles. The results reveal that the entropy generation number strongly varies by variations in Reynolds number, Prandtl number, Lewis number, and thermophoresis parameter. A comparative study of our numerical results with the results from previous works is also performed which shows excellent agreement.
•Entropy analysis for MHD flow of Jeffrey nanofluid over a stretching sheet is studied.•Effects of various parameters on entropy generation characteristics is investigated.•Comparison of our results with the results of previous works shows excellent agreement.•Entropy generation number strongly varies by Reynolds number and thermophoresis parameter.</description><subject>Brownian motion</subject><subject>Computational fluid dynamics</subject><subject>Entropy</subject><subject>Entropy generation</subject><subject>Forced convection</subject><subject>Heat transfer</subject><subject>Laminar MHD flow</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanostructure</subject><subject>non-Newtonian nanofluid</subject><subject>Stretching</subject><subject>Thermophoresis</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPAyEUhWehifXxD1ywdNMRBgaGjYlp6itN3OiaULi0NFOoQGvm3ztNXRtXd3G_c3LOqapbgmuCCb_f1BAgrYa6wYTVhNS4IWfVBFOOpy1jzUV1mfMGY9x2Uk6qMA8lxd2AdND9kH1GLia01asAJa4Hm6Idgt56g1wfv0fKojXogkrSITtIKDqk0Rs4l2BAQYfo-r23KB7Gn0a5JChm7cMK5TVAua7One4z3Pzeq-rzaf4xe5ku3p9fZ4-LqRkjlimVVEprGkmBL50RHdWM2w4kW5pWGCdFeyzLeYspZoQ3xAiwHRPQiaajnF5VdyffXYpfe8hFbX020Pc6QNxnRbgQEhPB6H9QOqaR8oiyE2pSzDmBU7vktzoNimB1DKQ26rS-Oq6vCFHj-qPs4SSDsfHBQ1LZeAgGrE9girLR_23wA2ivkkU</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Dalir, Nemat</creator><creator>Dehsara, Mohammad</creator><creator>Nourazar, S. Salman</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet</title><author>Dalir, Nemat ; Dehsara, Mohammad ; Nourazar, S. Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-39399dc293e6bfc783a46d8e94bc57cf975101666503041621c7ed847e8728363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brownian motion</topic><topic>Computational fluid dynamics</topic><topic>Entropy</topic><topic>Entropy generation</topic><topic>Forced convection</topic><topic>Heat transfer</topic><topic>Laminar MHD flow</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanostructure</topic><topic>non-Newtonian nanofluid</topic><topic>Stretching</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalir, Nemat</creatorcontrib><creatorcontrib>Dehsara, Mohammad</creatorcontrib><creatorcontrib>Nourazar, S. Salman</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalir, Nemat</au><au>Dehsara, Mohammad</au><au>Nourazar, S. Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet</atitle><jtitle>Energy (Oxford)</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>79</volume><spage>351</spage><epage>362</epage><pages>351-362</pages><issn>0360-5442</issn><abstract>Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically studied. The nanofluid model is considered by using the Brownian motion and thermophoresis effects. The Jeffrey model is used to denote the non-Newtonian fluid. The boundary layer continuity, momentum, energy, and concentration equations are transformed by using appropriate similarity transformations to three nonlinear coupled ordinary differential equations (ODEs). Then, the ODEs are solved by applying an implicit Keller's box numerical algorithm. The influence of various controlling parameters including ratio of relaxation to retardation times, Deborah number, Eckert number, Brownian motion parameter, thermophoresis parameter, and Lewis number on flow, heat transfer, mass transfer, and entropy generation characteristics is examined and discussed. Graphical presentation of the numerical examination is performed to illustrate the influence of various parameters on velocity, temperature, nanoparticles volume fraction, and entropy generation number profiles. The results reveal that the entropy generation number strongly varies by variations in Reynolds number, Prandtl number, Lewis number, and thermophoresis parameter. A comparative study of our numerical results with the results from previous works is also performed which shows excellent agreement.
•Entropy analysis for MHD flow of Jeffrey nanofluid over a stretching sheet is studied.•Effects of various parameters on entropy generation characteristics is investigated.•Comparison of our results with the results of previous works shows excellent agreement.•Entropy generation number strongly varies by Reynolds number and thermophoresis parameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2014.11.021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2015-01, Vol.79, p.351-362 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677901743 |
source | Elsevier ScienceDirect Journals |
subjects | Brownian motion Computational fluid dynamics Entropy Entropy generation Forced convection Heat transfer Laminar MHD flow Mass transfer Mathematical models Nanofluids Nanostructure non-Newtonian nanofluid Stretching Thermophoresis |
title | Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20analysis%20for%20magnetohydrodynamic%20flow%20and%20heat%20transfer%20of%20a%20Jeffrey%20nanofluid%20over%20a%20stretching%20sheet&rft.jtitle=Energy%20(Oxford)&rft.au=Dalir,%20Nemat&rft.date=2015-01-01&rft.volume=79&rft.spage=351&rft.epage=362&rft.pages=351-362&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2014.11.021&rft_dat=%3Cproquest_cross%3E1677901743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673399993&rft_id=info:pmid/&rft_els_id=S0360544214012766&rfr_iscdi=true |