Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors
We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represe...
Gespeichert in:
Veröffentlicht in: | Radio science 2015-02, Vol.50 (2), p.138-152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 2 |
container_start_page | 138 |
container_title | Radio science |
container_volume | 50 |
creator | Norberg, J. Roininen, L. Vierinen, J. Amm, O. McKay-Bukowski, D. Lehtinen, M. |
description | We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes.
Key Points
We present a novel ionospheric tomography reconstruction method
The method is based on Bayesian inference with the use of GMRF priors
The prior distribution is built based on physical and empirical information |
doi_str_mv | 10.1002/2014RS005431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677900898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677900898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</originalsourceid><addsrcrecordid>eNqN0U1PGzEQBmCrolID7a0_wBIXDiyMvf7aI4Q2IAGtQlF7s7xeLzHsrlM7aci_xxCEEAfU00jW845mPAh9JXBAAOghBcKmVwCcleQDGpGKsUJW1Z8tNAJgqhAC2Ce0ndItZMkFG6HrszCENJ-56C1ehD7cRDOfrbEf8LFZu-TNgNtoercK8Q6v_GKGJ2aZnt4vTLwL_3A0QxN63HrXNXgefYjpM_rYmi65L891B11___ZrfFqc_5icjY_OC8uJIgVtm5rZBlgpjZJOSWItY5xWtWgaBbKmpSOq5hVlhNWKiYpLzmRTWuosSFfuoL1N33kMf5cuLXTvk3VdZwYXlkkTIWUFoCr1P7QsFeGEZ7r7ht6GZRzyIlkJyhTNXbPa3ygbQ0rRtTrv3pu41gT04zn063NkTjd85Tu3ftfq6ckVBUofQ8Um5NPC3b-E8r_rPK7k-vflRIvx9FQo_lNPygekd5kJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662482779</pqid></control><display><type>article</type><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</creator><creatorcontrib>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</creatorcontrib><description>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes.
Key Points
We present a novel ionospheric tomography reconstruction method
The method is based on Bayesian inference with the use of GMRF priors
The prior distribution is built based on physical and empirical information</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2014RS005431</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Bayesian statistical inversion ; Construction ; Differential equations ; Gaussian Markov random fields ; Inference ; Ionosphere ; ionospheric tomography ; Ionospherics ; Mathematical models ; Reconstruction ; Tomography</subject><ispartof>Radio science, 2015-02, Vol.50 (2), p.138-152</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</citedby><cites>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014RS005431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014RS005431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Norberg, J.</creatorcontrib><creatorcontrib>Roininen, L.</creatorcontrib><creatorcontrib>Vierinen, J.</creatorcontrib><creatorcontrib>Amm, O.</creatorcontrib><creatorcontrib>McKay-Bukowski, D.</creatorcontrib><creatorcontrib>Lehtinen, M.</creatorcontrib><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes.
Key Points
We present a novel ionospheric tomography reconstruction method
The method is based on Bayesian inference with the use of GMRF priors
The prior distribution is built based on physical and empirical information</description><subject>Bayesian analysis</subject><subject>Bayesian statistical inversion</subject><subject>Construction</subject><subject>Differential equations</subject><subject>Gaussian Markov random fields</subject><subject>Inference</subject><subject>Ionosphere</subject><subject>ionospheric tomography</subject><subject>Ionospherics</subject><subject>Mathematical models</subject><subject>Reconstruction</subject><subject>Tomography</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1PGzEQBmCrolID7a0_wBIXDiyMvf7aI4Q2IAGtQlF7s7xeLzHsrlM7aci_xxCEEAfU00jW845mPAh9JXBAAOghBcKmVwCcleQDGpGKsUJW1Z8tNAJgqhAC2Ce0ndItZMkFG6HrszCENJ-56C1ehD7cRDOfrbEf8LFZu-TNgNtoercK8Q6v_GKGJ2aZnt4vTLwL_3A0QxN63HrXNXgefYjpM_rYmi65L891B11___ZrfFqc_5icjY_OC8uJIgVtm5rZBlgpjZJOSWItY5xWtWgaBbKmpSOq5hVlhNWKiYpLzmRTWuosSFfuoL1N33kMf5cuLXTvk3VdZwYXlkkTIWUFoCr1P7QsFeGEZ7r7ht6GZRzyIlkJyhTNXbPa3ygbQ0rRtTrv3pu41gT04zn063NkTjd85Tu3ftfq6ckVBUofQ8Um5NPC3b-E8r_rPK7k-vflRIvx9FQo_lNPygekd5kJ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Norberg, J.</creator><creator>Roininen, L.</creator><creator>Vierinen, J.</creator><creator>Amm, O.</creator><creator>McKay-Bukowski, D.</creator><creator>Lehtinen, M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201502</creationdate><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><author>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Bayesian statistical inversion</topic><topic>Construction</topic><topic>Differential equations</topic><topic>Gaussian Markov random fields</topic><topic>Inference</topic><topic>Ionosphere</topic><topic>ionospheric tomography</topic><topic>Ionospherics</topic><topic>Mathematical models</topic><topic>Reconstruction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norberg, J.</creatorcontrib><creatorcontrib>Roininen, L.</creatorcontrib><creatorcontrib>Vierinen, J.</creatorcontrib><creatorcontrib>Amm, O.</creatorcontrib><creatorcontrib>McKay-Bukowski, D.</creatorcontrib><creatorcontrib>Lehtinen, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norberg, J.</au><au>Roininen, L.</au><au>Vierinen, J.</au><au>Amm, O.</au><au>McKay-Bukowski, D.</au><au>Lehtinen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2015-02</date><risdate>2015</risdate><volume>50</volume><issue>2</issue><spage>138</spage><epage>152</epage><pages>138-152</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes.
Key Points
We present a novel ionospheric tomography reconstruction method
The method is based on Bayesian inference with the use of GMRF priors
The prior distribution is built based on physical and empirical information</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014RS005431</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-6604 |
ispartof | Radio science, 2015-02, Vol.50 (2), p.138-152 |
issn | 0048-6604 1944-799X |
language | eng |
recordid | cdi_proquest_miscellaneous_1677900898 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bayesian analysis Bayesian statistical inversion Construction Differential equations Gaussian Markov random fields Inference Ionosphere ionospheric tomography Ionospherics Mathematical models Reconstruction Tomography |
title | Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionospheric%20tomography%20in%20Bayesian%20framework%20with%20Gaussian%20Markov%20random%20field%20priors&rft.jtitle=Radio%20science&rft.au=Norberg,%20J.&rft.date=2015-02&rft.volume=50&rft.issue=2&rft.spage=138&rft.epage=152&rft.pages=138-152&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2014RS005431&rft_dat=%3Cproquest_cross%3E1677900898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662482779&rft_id=info:pmid/&rfr_iscdi=true |