Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors

We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2015-02, Vol.50 (2), p.138-152
Hauptverfasser: Norberg, J., Roininen, L., Vierinen, J., Amm, O., McKay-Bukowski, D., Lehtinen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 2
container_start_page 138
container_title Radio science
container_volume 50
creator Norberg, J.
Roininen, L.
Vierinen, J.
Amm, O.
McKay-Bukowski, D.
Lehtinen, M.
description We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes. Key Points We present a novel ionospheric tomography reconstruction method The method is based on Bayesian inference with the use of GMRF priors The prior distribution is built based on physical and empirical information
doi_str_mv 10.1002/2014RS005431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677900898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677900898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</originalsourceid><addsrcrecordid>eNqN0U1PGzEQBmCrolID7a0_wBIXDiyMvf7aI4Q2IAGtQlF7s7xeLzHsrlM7aci_xxCEEAfU00jW845mPAh9JXBAAOghBcKmVwCcleQDGpGKsUJW1Z8tNAJgqhAC2Ce0ndItZMkFG6HrszCENJ-56C1ehD7cRDOfrbEf8LFZu-TNgNtoercK8Q6v_GKGJ2aZnt4vTLwL_3A0QxN63HrXNXgefYjpM_rYmi65L891B11___ZrfFqc_5icjY_OC8uJIgVtm5rZBlgpjZJOSWItY5xWtWgaBbKmpSOq5hVlhNWKiYpLzmRTWuosSFfuoL1N33kMf5cuLXTvk3VdZwYXlkkTIWUFoCr1P7QsFeGEZ7r7ht6GZRzyIlkJyhTNXbPa3ygbQ0rRtTrv3pu41gT04zn063NkTjd85Tu3ftfq6ckVBUofQ8Um5NPC3b-E8r_rPK7k-vflRIvx9FQo_lNPygekd5kJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662482779</pqid></control><display><type>article</type><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</creator><creatorcontrib>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</creatorcontrib><description>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes. Key Points We present a novel ionospheric tomography reconstruction method The method is based on Bayesian inference with the use of GMRF priors The prior distribution is built based on physical and empirical information</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2014RS005431</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Bayesian statistical inversion ; Construction ; Differential equations ; Gaussian Markov random fields ; Inference ; Ionosphere ; ionospheric tomography ; Ionospherics ; Mathematical models ; Reconstruction ; Tomography</subject><ispartof>Radio science, 2015-02, Vol.50 (2), p.138-152</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</citedby><cites>FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014RS005431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014RS005431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Norberg, J.</creatorcontrib><creatorcontrib>Roininen, L.</creatorcontrib><creatorcontrib>Vierinen, J.</creatorcontrib><creatorcontrib>Amm, O.</creatorcontrib><creatorcontrib>McKay-Bukowski, D.</creatorcontrib><creatorcontrib>Lehtinen, M.</creatorcontrib><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes. Key Points We present a novel ionospheric tomography reconstruction method The method is based on Bayesian inference with the use of GMRF priors The prior distribution is built based on physical and empirical information</description><subject>Bayesian analysis</subject><subject>Bayesian statistical inversion</subject><subject>Construction</subject><subject>Differential equations</subject><subject>Gaussian Markov random fields</subject><subject>Inference</subject><subject>Ionosphere</subject><subject>ionospheric tomography</subject><subject>Ionospherics</subject><subject>Mathematical models</subject><subject>Reconstruction</subject><subject>Tomography</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1PGzEQBmCrolID7a0_wBIXDiyMvf7aI4Q2IAGtQlF7s7xeLzHsrlM7aci_xxCEEAfU00jW845mPAh9JXBAAOghBcKmVwCcleQDGpGKsUJW1Z8tNAJgqhAC2Ce0ndItZMkFG6HrszCENJ-56C1ehD7cRDOfrbEf8LFZu-TNgNtoercK8Q6v_GKGJ2aZnt4vTLwL_3A0QxN63HrXNXgefYjpM_rYmi65L891B11___ZrfFqc_5icjY_OC8uJIgVtm5rZBlgpjZJOSWItY5xWtWgaBbKmpSOq5hVlhNWKiYpLzmRTWuosSFfuoL1N33kMf5cuLXTvk3VdZwYXlkkTIWUFoCr1P7QsFeGEZ7r7ht6GZRzyIlkJyhTNXbPa3ygbQ0rRtTrv3pu41gT04zn063NkTjd85Tu3ftfq6ckVBUofQ8Um5NPC3b-E8r_rPK7k-vflRIvx9FQo_lNPygekd5kJ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Norberg, J.</creator><creator>Roininen, L.</creator><creator>Vierinen, J.</creator><creator>Amm, O.</creator><creator>McKay-Bukowski, D.</creator><creator>Lehtinen, M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201502</creationdate><title>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</title><author>Norberg, J. ; Roininen, L. ; Vierinen, J. ; Amm, O. ; McKay-Bukowski, D. ; Lehtinen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5181-2fdb4cd0437a87e871cc44529b6dd807b23e18b592414b846957547d3c2ec07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Bayesian statistical inversion</topic><topic>Construction</topic><topic>Differential equations</topic><topic>Gaussian Markov random fields</topic><topic>Inference</topic><topic>Ionosphere</topic><topic>ionospheric tomography</topic><topic>Ionospherics</topic><topic>Mathematical models</topic><topic>Reconstruction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norberg, J.</creatorcontrib><creatorcontrib>Roininen, L.</creatorcontrib><creatorcontrib>Vierinen, J.</creatorcontrib><creatorcontrib>Amm, O.</creatorcontrib><creatorcontrib>McKay-Bukowski, D.</creatorcontrib><creatorcontrib>Lehtinen, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norberg, J.</au><au>Roininen, L.</au><au>Vierinen, J.</au><au>Amm, O.</au><au>McKay-Bukowski, D.</au><au>Lehtinen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2015-02</date><risdate>2015</risdate><volume>50</volume><issue>2</issue><spage>138</spage><epage>152</epage><pages>138-152</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>We present a novel ionospheric tomography reconstruction method. The method is based on Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system of stochastic partial differential equations. Numerical approximations of these equations can be represented with linear systems with sparse matrices, therefore providing computational efficiency. The method enables an interpretable scheme to build the prior distribution based on physical and empirical information on the structure of the ionosphere. We show through synthetic test cases in a two‐dimensional setup of latitude‐altitude slices how this method can be applied to satellite‐based ionospheric tomography and how information about the structure of the ionosphere can be implemented in the prior. The technique is capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other data sets of ionospheric electron density, such as ground‐based observations by radars or ionosondes. Key Points We present a novel ionospheric tomography reconstruction method The method is based on Bayesian inference with the use of GMRF priors The prior distribution is built based on physical and empirical information</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014RS005431</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2015-02, Vol.50 (2), p.138-152
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_miscellaneous_1677900898
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bayesian analysis
Bayesian statistical inversion
Construction
Differential equations
Gaussian Markov random fields
Inference
Ionosphere
ionospheric tomography
Ionospherics
Mathematical models
Reconstruction
Tomography
title Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionospheric%20tomography%20in%20Bayesian%20framework%20with%20Gaussian%20Markov%20random%20field%20priors&rft.jtitle=Radio%20science&rft.au=Norberg,%20J.&rft.date=2015-02&rft.volume=50&rft.issue=2&rft.spage=138&rft.epage=152&rft.pages=138-152&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2014RS005431&rft_dat=%3Cproquest_cross%3E1677900898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662482779&rft_id=info:pmid/&rfr_iscdi=true