Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2013-01, Vol.47 (1), p.125-147, Article 125
Hauptverfasser: Chen, Huangxin, Hoppe, Ronald H.W., Xu, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 125
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 47
creator Chen, Huangxin
Hoppe, Ronald H.W.
Xu, Xuejun
description For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.
doi_str_mv 10.1051/m2an/2012023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677900743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677900743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</originalsourceid><addsrcrecordid>eNp1kE1rFTEUhoNY8Nq68wcERHDh2Jx8TJKllFaFliLcUnET0kymN3UmaZOM1n9v6r10UejqnMVz3vPyIPQWyCcgAg5nauMhJUAJZS_QCqgmHVMcXqIVkT3vhGI_XqHXpdwQQoBwsUIXFzGMKc_Ypfjb52sfncdpxFNydsLzMtVwncOAZ183aSi4sbhuPK5h9t3G5jnF4PCZvf_jpwn7u8XWkOIB2hvtVPyb3dxH65Pj9dHX7vT8y7ejz6ed44TW1me4At1TqSmnTAsLXl0NApR3WitGAajwIyfMgtaj7cE653nbBu60FWwffdjG3uZ0t_hSzRyKa0Vs9GkpBnopNSGSs4a-e4LepCXHVs4A7aWiAhg06uOWcjmVkv1obnOYbf5rgJgHxeZBsdkpbvj7XagtTdeYbXShPN7Qvj1XUjWOPol1of4XVbMN03Ph3fYolOrvH0Nt_mV6yaQwilyatfp-9lNfanPC_gGRg5sF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267825131</pqid></control><display><type>article</type><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><source>Cambridge Core</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>NUMDAM</source><creator>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</creator><creatorcontrib>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</creatorcontrib><description>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2012023</identifier><identifier>CODEN: RMMAEV</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>65N30 ; 65N50 ; 65N55 ; 78M60 ; Acceleration of convergence ; adaptive edge finite element methods ; Algebra ; Algebraic geometry ; Approximation ; Basis functions ; Computational mathematics ; Convergence ; Eigenvalues ; Exact sciences and technology ; Finite element method ; indefinite ; Linear systems ; local Hiptmair smoothers ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematics ; Maxwell equation ; Maxwell equations ; Multigrid methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Nédélec edge elements ; optimality ; Sciences and techniques of general use ; Studies</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2013-01, Vol.47 (1), p.125-147, Article 125</ispartof><rights>2014 INIST-CNRS</rights><rights>EDP Sciences, SMAI, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</citedby><cites>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26900878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Huangxin</creatorcontrib><creatorcontrib>Hoppe, Ronald H.W.</creatorcontrib><creatorcontrib>Xu, Xuejun</creatorcontrib><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</description><subject>65N30</subject><subject>65N50</subject><subject>65N55</subject><subject>78M60</subject><subject>Acceleration of convergence</subject><subject>adaptive edge finite element methods</subject><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Computational mathematics</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>indefinite</subject><subject>Linear systems</subject><subject>local Hiptmair smoothers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maxwell equation</subject><subject>Maxwell equations</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Nédélec edge elements</subject><subject>optimality</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rFTEUhoNY8Nq68wcERHDh2Jx8TJKllFaFliLcUnET0kymN3UmaZOM1n9v6r10UejqnMVz3vPyIPQWyCcgAg5nauMhJUAJZS_QCqgmHVMcXqIVkT3vhGI_XqHXpdwQQoBwsUIXFzGMKc_Ypfjb52sfncdpxFNydsLzMtVwncOAZ183aSi4sbhuPK5h9t3G5jnF4PCZvf_jpwn7u8XWkOIB2hvtVPyb3dxH65Pj9dHX7vT8y7ejz6ed44TW1me4At1TqSmnTAsLXl0NApR3WitGAajwIyfMgtaj7cE653nbBu60FWwffdjG3uZ0t_hSzRyKa0Vs9GkpBnopNSGSs4a-e4LepCXHVs4A7aWiAhg06uOWcjmVkv1obnOYbf5rgJgHxeZBsdkpbvj7XagtTdeYbXShPN7Qvj1XUjWOPol1of4XVbMN03Ph3fYolOrvH0Nt_mV6yaQwilyatfp-9lNfanPC_gGRg5sF</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Chen, Huangxin</creator><creator>Hoppe, Ronald H.W.</creator><creator>Xu, Xuejun</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><author>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>65N30</topic><topic>65N50</topic><topic>65N55</topic><topic>78M60</topic><topic>Acceleration of convergence</topic><topic>adaptive edge finite element methods</topic><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Computational mathematics</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>indefinite</topic><topic>Linear systems</topic><topic>local Hiptmair smoothers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maxwell equation</topic><topic>Maxwell equations</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Nédélec edge elements</topic><topic>optimality</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huangxin</creatorcontrib><creatorcontrib>Hoppe, Ronald H.W.</creatorcontrib><creatorcontrib>Xu, Xuejun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huangxin</au><au>Hoppe, Ronald H.W.</au><au>Xu, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2013-01</date><risdate>2013</risdate><volume>47</volume><issue>1</issue><spage>125</spage><epage>147</epage><pages>125-147</pages><artnum>125</artnum><issn>0764-583X</issn><eissn>1290-3841</eissn><coden>RMMAEV</coden><abstract>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2012023</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2013-01, Vol.47 (1), p.125-147, Article 125
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_miscellaneous_1677900743
source Cambridge Core; Alma/SFX Local Collection; EZB Electronic Journals Library; NUMDAM
subjects 65N30
65N50
65N55
78M60
Acceleration of convergence
adaptive edge finite element methods
Algebra
Algebraic geometry
Approximation
Basis functions
Computational mathematics
Convergence
Eigenvalues
Exact sciences and technology
Finite element method
indefinite
Linear systems
local Hiptmair smoothers
Mathematical analysis
Mathematical functions
Mathematical models
Mathematics
Maxwell equation
Maxwell equations
Multigrid methods
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Nédélec edge elements
optimality
Sciences and techniques of general use
Studies
title Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20convergence%20of%20local%20multigrid%20methods%20for%20the%20time-harmonic%20Maxwell%20equation&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Chen,%20Huangxin&rft.date=2013-01&rft.volume=47&rft.issue=1&rft.spage=125&rft.epage=147&rft.pages=125-147&rft.artnum=125&rft.issn=0764-583X&rft.eissn=1290-3841&rft.coden=RMMAEV&rft_id=info:doi/10.1051/m2an/2012023&rft_dat=%3Cproquest_cross%3E1677900743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267825131&rft_id=info:pmid/&rfr_iscdi=true