Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge e...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2013-01, Vol.47 (1), p.125-147, Article 125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 47 |
creator | Chen, Huangxin Hoppe, Ronald H.W. Xu, Xuejun |
description | For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples. |
doi_str_mv | 10.1051/m2an/2012023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677900743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677900743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</originalsourceid><addsrcrecordid>eNp1kE1rFTEUhoNY8Nq68wcERHDh2Jx8TJKllFaFliLcUnET0kymN3UmaZOM1n9v6r10UejqnMVz3vPyIPQWyCcgAg5nauMhJUAJZS_QCqgmHVMcXqIVkT3vhGI_XqHXpdwQQoBwsUIXFzGMKc_Ypfjb52sfncdpxFNydsLzMtVwncOAZ183aSi4sbhuPK5h9t3G5jnF4PCZvf_jpwn7u8XWkOIB2hvtVPyb3dxH65Pj9dHX7vT8y7ejz6ed44TW1me4At1TqSmnTAsLXl0NApR3WitGAajwIyfMgtaj7cE653nbBu60FWwffdjG3uZ0t_hSzRyKa0Vs9GkpBnopNSGSs4a-e4LepCXHVs4A7aWiAhg06uOWcjmVkv1obnOYbf5rgJgHxeZBsdkpbvj7XagtTdeYbXShPN7Qvj1XUjWOPol1of4XVbMN03Ph3fYolOrvH0Nt_mV6yaQwilyatfp-9lNfanPC_gGRg5sF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267825131</pqid></control><display><type>article</type><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><source>Cambridge Core</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>NUMDAM</source><creator>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</creator><creatorcontrib>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</creatorcontrib><description>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2012023</identifier><identifier>CODEN: RMMAEV</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>65N30 ; 65N50 ; 65N55 ; 78M60 ; Acceleration of convergence ; adaptive edge finite element methods ; Algebra ; Algebraic geometry ; Approximation ; Basis functions ; Computational mathematics ; Convergence ; Eigenvalues ; Exact sciences and technology ; Finite element method ; indefinite ; Linear systems ; local Hiptmair smoothers ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematics ; Maxwell equation ; Maxwell equations ; Multigrid methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Nédélec edge elements ; optimality ; Sciences and techniques of general use ; Studies</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2013-01, Vol.47 (1), p.125-147, Article 125</ispartof><rights>2014 INIST-CNRS</rights><rights>EDP Sciences, SMAI, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</citedby><cites>FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26900878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Huangxin</creatorcontrib><creatorcontrib>Hoppe, Ronald H.W.</creatorcontrib><creatorcontrib>Xu, Xuejun</creatorcontrib><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</description><subject>65N30</subject><subject>65N50</subject><subject>65N55</subject><subject>78M60</subject><subject>Acceleration of convergence</subject><subject>adaptive edge finite element methods</subject><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Computational mathematics</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>indefinite</subject><subject>Linear systems</subject><subject>local Hiptmair smoothers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maxwell equation</subject><subject>Maxwell equations</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Nédélec edge elements</subject><subject>optimality</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rFTEUhoNY8Nq68wcERHDh2Jx8TJKllFaFliLcUnET0kymN3UmaZOM1n9v6r10UejqnMVz3vPyIPQWyCcgAg5nauMhJUAJZS_QCqgmHVMcXqIVkT3vhGI_XqHXpdwQQoBwsUIXFzGMKc_Ypfjb52sfncdpxFNydsLzMtVwncOAZ183aSi4sbhuPK5h9t3G5jnF4PCZvf_jpwn7u8XWkOIB2hvtVPyb3dxH65Pj9dHX7vT8y7ejz6ed44TW1me4At1TqSmnTAsLXl0NApR3WitGAajwIyfMgtaj7cE653nbBu60FWwffdjG3uZ0t_hSzRyKa0Vs9GkpBnopNSGSs4a-e4LepCXHVs4A7aWiAhg06uOWcjmVkv1obnOYbf5rgJgHxeZBsdkpbvj7XagtTdeYbXShPN7Qvj1XUjWOPol1of4XVbMN03Ph3fYolOrvH0Nt_mV6yaQwilyatfp-9lNfanPC_gGRg5sF</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Chen, Huangxin</creator><creator>Hoppe, Ronald H.W.</creator><creator>Xu, Xuejun</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</title><author>Chen, Huangxin ; Hoppe, Ronald H.W. ; Xu, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-58db196279242395a1e8bd518ec998321125ef403a199fa61acce49fad4c9a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>65N30</topic><topic>65N50</topic><topic>65N55</topic><topic>78M60</topic><topic>Acceleration of convergence</topic><topic>adaptive edge finite element methods</topic><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Computational mathematics</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>indefinite</topic><topic>Linear systems</topic><topic>local Hiptmair smoothers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maxwell equation</topic><topic>Maxwell equations</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Nédélec edge elements</topic><topic>optimality</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huangxin</creatorcontrib><creatorcontrib>Hoppe, Ronald H.W.</creatorcontrib><creatorcontrib>Xu, Xuejun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huangxin</au><au>Hoppe, Ronald H.W.</au><au>Xu, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2013-01</date><risdate>2013</risdate><volume>47</volume><issue>1</issue><spage>125</spage><epage>147</epage><pages>125-147</pages><artnum>125</artnum><issn>0764-583X</issn><eissn>1290-3841</eissn><coden>RMMAEV</coden><abstract>For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2012023</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2013-01, Vol.47 (1), p.125-147, Article 125 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677900743 |
source | Cambridge Core; Alma/SFX Local Collection; EZB Electronic Journals Library; NUMDAM |
subjects | 65N30 65N50 65N55 78M60 Acceleration of convergence adaptive edge finite element methods Algebra Algebraic geometry Approximation Basis functions Computational mathematics Convergence Eigenvalues Exact sciences and technology Finite element method indefinite Linear systems local Hiptmair smoothers Mathematical analysis Mathematical functions Mathematical models Mathematics Maxwell equation Maxwell equations Multigrid methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Nédélec edge elements optimality Sciences and techniques of general use Studies |
title | Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20convergence%20of%20local%20multigrid%20methods%20for%20the%20time-harmonic%20Maxwell%20equation&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Chen,%20Huangxin&rft.date=2013-01&rft.volume=47&rft.issue=1&rft.spage=125&rft.epage=147&rft.pages=125-147&rft.artnum=125&rft.issn=0764-583X&rft.eissn=1290-3841&rft.coden=RMMAEV&rft_id=info:doi/10.1051/m2an/2012023&rft_dat=%3Cproquest_cross%3E1677900743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267825131&rft_id=info:pmid/&rfr_iscdi=true |