Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films

TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-05, Vol.7 (18), p.8584-8592
Hauptverfasser: Cordova, Isvar A, Peng, Qing, Ferrall, Isa L, Rieth, Adam J, Hoertz, Paul G, Glass, Jeffrey T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8592
container_issue 18
container_start_page 8584
container_title Nanoscale
container_volume 7
creator Cordova, Isvar A
Peng, Qing
Ferrall, Isa L
Rieth, Adam J
Hoertz, Paul G
Glass, Jeffrey T
description TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.
doi_str_mv 10.1039/c4nr07377k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677892871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677892871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-22824cc9b9ef371962a88d8d5528d0162f56e9006df475d652df02e794a172713</originalsourceid><addsrcrecordid>eNo1kDtPwzAUhS0kREth4QcgjywBP5I4HlFVHlKlLmWOXPtaNTh2iB2gGz-dqMB0j_QdfdK5CF1RcksJl3e6DAMRXIi3EzRnpCQF54LN0HlKr4TUktf8DM1Y1UhZlnKOvldhr4IGg_t9zBE86DxEvYfOaeXxp8ow4PjljMouBvzhFFY5ThB7dZiQgT4md2TR4q3bMDxF68c4uACFif2kzi4cHYCDCrFXQ3baA7bOd-kCnVrlE1z-3QV6eVhtl0_FevP4vLxfFz2jNBeMNazUWu4kWC6orJlqGtOYqmKNIbRmtqpBTguNLUVl6ooZSxgIWSoqmKB8gW5-vf0Q30dIue1c0uC9ChDH1NJaiEay5li9_quOuw5M2w-uU8Oh_f8a_wFgIW4h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677892871</pqid></control><display><type>article</type><title>Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cordova, Isvar A ; Peng, Qing ; Ferrall, Isa L ; Rieth, Adam J ; Hoertz, Paul G ; Glass, Jeffrey T</creator><creatorcontrib>Cordova, Isvar A ; Peng, Qing ; Ferrall, Isa L ; Rieth, Adam J ; Hoertz, Paul G ; Glass, Jeffrey T</creatorcontrib><description>TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.</description><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c4nr07377k</identifier><identifier>PMID: 25899449</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2015-05, Vol.7 (18), p.8584-8592</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25899449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cordova, Isvar A</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Ferrall, Isa L</creatorcontrib><creatorcontrib>Rieth, Adam J</creatorcontrib><creatorcontrib>Hoertz, Paul G</creatorcontrib><creatorcontrib>Glass, Jeffrey T</creatorcontrib><title>Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.</description><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kDtPwzAUhS0kREth4QcgjywBP5I4HlFVHlKlLmWOXPtaNTh2iB2gGz-dqMB0j_QdfdK5CF1RcksJl3e6DAMRXIi3EzRnpCQF54LN0HlKr4TUktf8DM1Y1UhZlnKOvldhr4IGg_t9zBE86DxEvYfOaeXxp8ow4PjljMouBvzhFFY5ThB7dZiQgT4md2TR4q3bMDxF68c4uACFif2kzi4cHYCDCrFXQ3baA7bOd-kCnVrlE1z-3QV6eVhtl0_FevP4vLxfFz2jNBeMNazUWu4kWC6orJlqGtOYqmKNIbRmtqpBTguNLUVl6ooZSxgIWSoqmKB8gW5-vf0Q30dIue1c0uC9ChDH1NJaiEay5li9_quOuw5M2w-uU8Oh_f8a_wFgIW4h</recordid><startdate>20150514</startdate><enddate>20150514</enddate><creator>Cordova, Isvar A</creator><creator>Peng, Qing</creator><creator>Ferrall, Isa L</creator><creator>Rieth, Adam J</creator><creator>Hoertz, Paul G</creator><creator>Glass, Jeffrey T</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150514</creationdate><title>Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films</title><author>Cordova, Isvar A ; Peng, Qing ; Ferrall, Isa L ; Rieth, Adam J ; Hoertz, Paul G ; Glass, Jeffrey T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-22824cc9b9ef371962a88d8d5528d0162f56e9006df475d652df02e794a172713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordova, Isvar A</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Ferrall, Isa L</creatorcontrib><creatorcontrib>Rieth, Adam J</creatorcontrib><creatorcontrib>Hoertz, Paul G</creatorcontrib><creatorcontrib>Glass, Jeffrey T</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordova, Isvar A</au><au>Peng, Qing</au><au>Ferrall, Isa L</au><au>Rieth, Adam J</au><au>Hoertz, Paul G</au><au>Glass, Jeffrey T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-05-14</date><risdate>2015</risdate><volume>7</volume><issue>18</issue><spage>8584</spage><epage>8592</epage><pages>8584-8592</pages><eissn>2040-3372</eissn><abstract>TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.</abstract><cop>England</cop><pmid>25899449</pmid><doi>10.1039/c4nr07377k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2040-3372
ispartof Nanoscale, 2015-05, Vol.7 (18), p.8584-8592
issn 2040-3372
language eng
recordid cdi_proquest_miscellaneous_1677892871
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20photoelectrochemical%20water%20oxidation%20via%20atomic%20layer%20deposition%20of%20TiO2%20on%20fluorine-doped%20tin%20oxide%20nanoparticle%20films&rft.jtitle=Nanoscale&rft.au=Cordova,%20Isvar%20A&rft.date=2015-05-14&rft.volume=7&rft.issue=18&rft.spage=8584&rft.epage=8592&rft.pages=8584-8592&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr07377k&rft_dat=%3Cproquest_pubme%3E1677892871%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677892871&rft_id=info:pmid/25899449&rfr_iscdi=true