Auto-calibration approach for k-t SENSE
Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2014-03, Vol.71 (3), p.1123-1129 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1129 |
---|---|
container_issue | 3 |
container_start_page | 1123 |
container_title | Magnetic resonance in medicine |
container_volume | 71 |
creator | Ponce, Irene P. Blaimer, Martin Breuer, Felix A. Griswold, Mark A. Jakob, Peter M. Kellman, Peter |
description | Purpose
The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time.
Theory
The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images.
Methods
In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations.
Results
Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE.
Conclusion
Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.24738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677374980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3225275681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgipvTg19ABh7UQzVNXpbkOMacwlTYFMVLSNMUO9t1Ji26b2_mnAdBPOXye_-X90foMMbnMcbkonTlOQFOxRZqx4yQiDAJ26iNOeCIxhJaaM_7GcZYSg67qEUoY4AltNFJv6mryOgiT5yu82re1YuFq7R56WaV675GdXc6vJ0O99FOpgtvD77fDnq4HN4PrqLx3eh60B9HBpgUEUlsKjOtLYBgMZCEUcCWZbGhWSpTnhBhhDSJ7HFNetSITGjMTGaA6zQBSTvodJ0bPvHWWF-rMvfGFoWe26rxKu5xTjlIgf-nDIftgkgR6PEvOqsaNw-HrBQWhAJjQZ2tlXGV985mauHyUrulirFaFa1C0eqr6GCPvhObpLTpj9w0G8DFGrznhV3-naRuJjebyGg9kfvafvxMaPeqeuFmph5vRwqenuBx-jxRY_oJ2qOTlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500823455</pqid></control><display><type>article</type><title>Auto-calibration approach for k-t SENSE</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</creator><creatorcontrib>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</creatorcontrib><description>Purpose
The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time.
Theory
The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images.
Methods
In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations.
Results
Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE.
Conclusion
Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24738</identifier><identifier>PMID: 23554094</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; auto-calibration ; Calibration ; dynamic magnetic resonance imaging ; Humans ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Image Enhancement - standards ; Image Interpretation, Computer-Assisted - instrumentation ; Image Interpretation, Computer-Assisted - methods ; Image Interpretation, Computer-Assisted - standards ; Internationality ; k-t SENSE ; Magnetic Resonance Imaging, Cine - instrumentation ; Magnetic Resonance Imaging, Cine - methods ; Magnetic Resonance Imaging, Cine - standards ; parallel imaging ; Reproducibility of Results ; Sensitivity and Specificity ; temporal filtering</subject><ispartof>Magnetic resonance in medicine, 2014-03, Vol.71 (3), p.1123-1129</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</citedby><cites>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponce, Irene P.</creatorcontrib><creatorcontrib>Blaimer, Martin</creatorcontrib><creatorcontrib>Breuer, Felix A.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><creatorcontrib>Jakob, Peter M.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><title>Auto-calibration approach for k-t SENSE</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose
The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time.
Theory
The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images.
Methods
In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations.
Results
Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE.
Conclusion
Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>auto-calibration</subject><subject>Calibration</subject><subject>dynamic magnetic resonance imaging</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Image Enhancement - standards</subject><subject>Image Interpretation, Computer-Assisted - instrumentation</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Interpretation, Computer-Assisted - standards</subject><subject>Internationality</subject><subject>k-t SENSE</subject><subject>Magnetic Resonance Imaging, Cine - instrumentation</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Magnetic Resonance Imaging, Cine - standards</subject><subject>parallel imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>temporal filtering</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0EFLwzAUB_AgipvTg19ABh7UQzVNXpbkOMacwlTYFMVLSNMUO9t1Ji26b2_mnAdBPOXye_-X90foMMbnMcbkonTlOQFOxRZqx4yQiDAJ26iNOeCIxhJaaM_7GcZYSg67qEUoY4AltNFJv6mryOgiT5yu82re1YuFq7R56WaV675GdXc6vJ0O99FOpgtvD77fDnq4HN4PrqLx3eh60B9HBpgUEUlsKjOtLYBgMZCEUcCWZbGhWSpTnhBhhDSJ7HFNetSITGjMTGaA6zQBSTvodJ0bPvHWWF-rMvfGFoWe26rxKu5xTjlIgf-nDIftgkgR6PEvOqsaNw-HrBQWhAJjQZ2tlXGV985mauHyUrulirFaFa1C0eqr6GCPvhObpLTpj9w0G8DFGrznhV3-naRuJjebyGg9kfvafvxMaPeqeuFmph5vRwqenuBx-jxRY_oJ2qOTlA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Ponce, Irene P.</creator><creator>Blaimer, Martin</creator><creator>Breuer, Felix A.</creator><creator>Griswold, Mark A.</creator><creator>Jakob, Peter M.</creator><creator>Kellman, Peter</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Auto-calibration approach for k-t SENSE</title><author>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>auto-calibration</topic><topic>Calibration</topic><topic>dynamic magnetic resonance imaging</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Image Enhancement - standards</topic><topic>Image Interpretation, Computer-Assisted - instrumentation</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Interpretation, Computer-Assisted - standards</topic><topic>Internationality</topic><topic>k-t SENSE</topic><topic>Magnetic Resonance Imaging, Cine - instrumentation</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Magnetic Resonance Imaging, Cine - standards</topic><topic>parallel imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>temporal filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponce, Irene P.</creatorcontrib><creatorcontrib>Blaimer, Martin</creatorcontrib><creatorcontrib>Breuer, Felix A.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><creatorcontrib>Jakob, Peter M.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponce, Irene P.</au><au>Blaimer, Martin</au><au>Breuer, Felix A.</au><au>Griswold, Mark A.</au><au>Jakob, Peter M.</au><au>Kellman, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto-calibration approach for k-t SENSE</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-03</date><risdate>2014</risdate><volume>71</volume><issue>3</issue><spage>1123</spage><epage>1129</epage><pages>1123-1129</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time.
Theory
The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images.
Methods
In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations.
Results
Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE.
Conclusion
Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23554094</pmid><doi>10.1002/mrm.24738</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2014-03, Vol.71 (3), p.1123-1129 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677374980 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Algorithms auto-calibration Calibration dynamic magnetic resonance imaging Humans Image Enhancement - instrumentation Image Enhancement - methods Image Enhancement - standards Image Interpretation, Computer-Assisted - instrumentation Image Interpretation, Computer-Assisted - methods Image Interpretation, Computer-Assisted - standards Internationality k-t SENSE Magnetic Resonance Imaging, Cine - instrumentation Magnetic Resonance Imaging, Cine - methods Magnetic Resonance Imaging, Cine - standards parallel imaging Reproducibility of Results Sensitivity and Specificity temporal filtering |
title | Auto-calibration approach for k-t SENSE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto-calibration%20approach%20for%20k-t%20SENSE&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ponce,%20Irene%20P.&rft.date=2014-03&rft.volume=71&rft.issue=3&rft.spage=1123&rft.epage=1129&rft.pages=1123-1129&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24738&rft_dat=%3Cproquest_cross%3E3225275681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500823455&rft_id=info:pmid/23554094&rfr_iscdi=true |