Auto-calibration approach for k-t SENSE

Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2014-03, Vol.71 (3), p.1123-1129
Hauptverfasser: Ponce, Irene P., Blaimer, Martin, Breuer, Felix A., Griswold, Mark A., Jakob, Peter M., Kellman, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 3
container_start_page 1123
container_title Magnetic resonance in medicine
container_volume 71
creator Ponce, Irene P.
Blaimer, Martin
Breuer, Felix A.
Griswold, Mark A.
Jakob, Peter M.
Kellman, Peter
description Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images. Methods In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations. Results Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE. Conclusion Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.24738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677374980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3225275681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgipvTg19ABh7UQzVNXpbkOMacwlTYFMVLSNMUO9t1Ji26b2_mnAdBPOXye_-X90foMMbnMcbkonTlOQFOxRZqx4yQiDAJ26iNOeCIxhJaaM_7GcZYSg67qEUoY4AltNFJv6mryOgiT5yu82re1YuFq7R56WaV675GdXc6vJ0O99FOpgtvD77fDnq4HN4PrqLx3eh60B9HBpgUEUlsKjOtLYBgMZCEUcCWZbGhWSpTnhBhhDSJ7HFNetSITGjMTGaA6zQBSTvodJ0bPvHWWF-rMvfGFoWe26rxKu5xTjlIgf-nDIftgkgR6PEvOqsaNw-HrBQWhAJjQZ2tlXGV985mauHyUrulirFaFa1C0eqr6GCPvhObpLTpj9w0G8DFGrznhV3-naRuJjebyGg9kfvafvxMaPeqeuFmph5vRwqenuBx-jxRY_oJ2qOTlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500823455</pqid></control><display><type>article</type><title>Auto-calibration approach for k-t SENSE</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</creator><creatorcontrib>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</creatorcontrib><description>Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images. Methods In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations. Results Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE. Conclusion Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24738</identifier><identifier>PMID: 23554094</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; auto-calibration ; Calibration ; dynamic magnetic resonance imaging ; Humans ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Image Enhancement - standards ; Image Interpretation, Computer-Assisted - instrumentation ; Image Interpretation, Computer-Assisted - methods ; Image Interpretation, Computer-Assisted - standards ; Internationality ; k-t SENSE ; Magnetic Resonance Imaging, Cine - instrumentation ; Magnetic Resonance Imaging, Cine - methods ; Magnetic Resonance Imaging, Cine - standards ; parallel imaging ; Reproducibility of Results ; Sensitivity and Specificity ; temporal filtering</subject><ispartof>Magnetic resonance in medicine, 2014-03, Vol.71 (3), p.1123-1129</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</citedby><cites>FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponce, Irene P.</creatorcontrib><creatorcontrib>Blaimer, Martin</creatorcontrib><creatorcontrib>Breuer, Felix A.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><creatorcontrib>Jakob, Peter M.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><title>Auto-calibration approach for k-t SENSE</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images. Methods In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations. Results Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE. Conclusion Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>auto-calibration</subject><subject>Calibration</subject><subject>dynamic magnetic resonance imaging</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Image Enhancement - standards</subject><subject>Image Interpretation, Computer-Assisted - instrumentation</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Interpretation, Computer-Assisted - standards</subject><subject>Internationality</subject><subject>k-t SENSE</subject><subject>Magnetic Resonance Imaging, Cine - instrumentation</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Magnetic Resonance Imaging, Cine - standards</subject><subject>parallel imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>temporal filtering</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0EFLwzAUB_AgipvTg19ABh7UQzVNXpbkOMacwlTYFMVLSNMUO9t1Ji26b2_mnAdBPOXye_-X90foMMbnMcbkonTlOQFOxRZqx4yQiDAJ26iNOeCIxhJaaM_7GcZYSg67qEUoY4AltNFJv6mryOgiT5yu82re1YuFq7R56WaV675GdXc6vJ0O99FOpgtvD77fDnq4HN4PrqLx3eh60B9HBpgUEUlsKjOtLYBgMZCEUcCWZbGhWSpTnhBhhDSJ7HFNetSITGjMTGaA6zQBSTvodJ0bPvHWWF-rMvfGFoWe26rxKu5xTjlIgf-nDIftgkgR6PEvOqsaNw-HrBQWhAJjQZ2tlXGV985mauHyUrulirFaFa1C0eqr6GCPvhObpLTpj9w0G8DFGrznhV3-naRuJjebyGg9kfvafvxMaPeqeuFmph5vRwqenuBx-jxRY_oJ2qOTlA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Ponce, Irene P.</creator><creator>Blaimer, Martin</creator><creator>Breuer, Felix A.</creator><creator>Griswold, Mark A.</creator><creator>Jakob, Peter M.</creator><creator>Kellman, Peter</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Auto-calibration approach for k-t SENSE</title><author>Ponce, Irene P. ; Blaimer, Martin ; Breuer, Felix A. ; Griswold, Mark A. ; Jakob, Peter M. ; Kellman, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4598-2bed9faae4485142b5340e5f1c3fd9d7b28c89cb967a263c8f8a05cfc47adb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>auto-calibration</topic><topic>Calibration</topic><topic>dynamic magnetic resonance imaging</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Image Enhancement - standards</topic><topic>Image Interpretation, Computer-Assisted - instrumentation</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Interpretation, Computer-Assisted - standards</topic><topic>Internationality</topic><topic>k-t SENSE</topic><topic>Magnetic Resonance Imaging, Cine - instrumentation</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Magnetic Resonance Imaging, Cine - standards</topic><topic>parallel imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>temporal filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponce, Irene P.</creatorcontrib><creatorcontrib>Blaimer, Martin</creatorcontrib><creatorcontrib>Breuer, Felix A.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><creatorcontrib>Jakob, Peter M.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponce, Irene P.</au><au>Blaimer, Martin</au><au>Breuer, Felix A.</au><au>Griswold, Mark A.</au><au>Jakob, Peter M.</au><au>Kellman, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto-calibration approach for k-t SENSE</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-03</date><risdate>2014</risdate><volume>71</volume><issue>3</issue><spage>1123</spage><epage>1129</epage><pages>1123-1129</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose The goal of this work is to increase the spatial resolution of training data, used by reconstruction methods such as k–t SENSE in order to calculate the missing data in a series of dynamic images, without compromising their temporal resolution or acquisition time. Theory The k‐t SENSE method allows dynamic imaging at high acceleration factors with high reconstruction quality. However, the low resolution training data required by k‐t SENSE may cause undesired temporal filtering effects in the reconstructed images. Methods In this work, a feedback regularization approach is applied to realize auto‐calibration of the k‐t SENSE algorithm. To that end, a full resolution training data set is calculated from the accelerated data itself using a TSENSE reconstruction. The reconstructed training data are then fed back for the actual k‐t SENSE reconstruction. For evaluation of our approach, temporal filtering effects are quantified by calculating the modulation transfer function and noise measurements are done by Monte‐Carlo simulations. Results Computer simulations and cardiac imaging experiments demonstrate an improved temporal fidelity of auto‐calibrated k‐t SENSE compared to standard k‐t SENSE. Conclusion Auto‐calibrated k‐t SENSE provides high quality reconstructions for dynamic imaging applications. Magn Reson Med 71:1123–1129, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23554094</pmid><doi>10.1002/mrm.24738</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2014-03, Vol.71 (3), p.1123-1129
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1677374980
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Algorithms
auto-calibration
Calibration
dynamic magnetic resonance imaging
Humans
Image Enhancement - instrumentation
Image Enhancement - methods
Image Enhancement - standards
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
Image Interpretation, Computer-Assisted - standards
Internationality
k-t SENSE
Magnetic Resonance Imaging, Cine - instrumentation
Magnetic Resonance Imaging, Cine - methods
Magnetic Resonance Imaging, Cine - standards
parallel imaging
Reproducibility of Results
Sensitivity and Specificity
temporal filtering
title Auto-calibration approach for k-t SENSE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto-calibration%20approach%20for%20k-t%20SENSE&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ponce,%20Irene%20P.&rft.date=2014-03&rft.volume=71&rft.issue=3&rft.spage=1123&rft.epage=1129&rft.pages=1123-1129&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24738&rft_dat=%3Cproquest_cross%3E3225275681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500823455&rft_id=info:pmid/23554094&rfr_iscdi=true