Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer

The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-04, Vol.9 (4), p.3572-3578
Hauptverfasser: Heidorn, Sarah-Charlotta, Bertram, Cord, Cabrera-Sanfelix, Pepa, Morgenstern, Karina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3578
container_issue 4
container_start_page 3572
container_title ACS nano
container_volume 9
creator Heidorn, Sarah-Charlotta
Bertram, Cord
Cabrera-Sanfelix, Pepa
Morgenstern, Karina
description The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we derive the diffusion energy, the pre-exponential factor, and the attempt frequency. The mechanism of the motion is identified by comparison of the experimental results to theoretical calculations. Via low temperature adsorption site determination in connection with density functional theory, we reveal an influence of the metallic support onto the intermediate state of the diffusive motion.
doi_str_mv 10.1021/acsnano.5b00691
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676596332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676596332</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-55252a36f8d84c12756bde7b9f6d25f55925598d4ee39ae9e4f7978ed552dc643</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EoqUwsyGPRSjFj9iOR0h5SYUuILFZTnJWXeVR4gSp_z1BDQyn-w3fne4-hC4pWVDC6K3NQ23rZiEyQqSmR2hKNZcRSeTn8X8WdILOQtgSIlSi5CmaMKE4TYieomXa1AHyvvPfgF8h39jahwr7GncbwEvvXB98U-PG4SVb4yFZ_GbTck4Jucb3vrR7aM_RibNlgIuxz9DH48N7-hyt1k8v6d0qsixWXSQEE8xy6ZIiiXPKlJBZASrTThZMOCE0GyopYgCuLWiIndIqgWIYLHIZ8xmaH_bu2uarh9CZyoccytLW0PTBUKmk0JJzNqBXI9pnFRRm1_rKtnvz9_kA3ByAQaHZNn1bD5cbSsyvVzN6NaNX_gPjNWcq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676596332</pqid></control><display><type>article</type><title>Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer</title><source>American Chemical Society Journals</source><creator>Heidorn, Sarah-Charlotta ; Bertram, Cord ; Cabrera-Sanfelix, Pepa ; Morgenstern, Karina</creator><creatorcontrib>Heidorn, Sarah-Charlotta ; Bertram, Cord ; Cabrera-Sanfelix, Pepa ; Morgenstern, Karina</creatorcontrib><description>The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we derive the diffusion energy, the pre-exponential factor, and the attempt frequency. The mechanism of the motion is identified by comparison of the experimental results to theoretical calculations. Via low temperature adsorption site determination in connection with density functional theory, we reveal an influence of the metallic support onto the intermediate state of the diffusive motion.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b00691</identifier><identifier>PMID: 25731809</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2015-04, Vol.9 (4), p.3572-3578</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b00691$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b00691$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25731809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heidorn, Sarah-Charlotta</creatorcontrib><creatorcontrib>Bertram, Cord</creatorcontrib><creatorcontrib>Cabrera-Sanfelix, Pepa</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><title>Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we derive the diffusion energy, the pre-exponential factor, and the attempt frequency. The mechanism of the motion is identified by comparison of the experimental results to theoretical calculations. Via low temperature adsorption site determination in connection with density functional theory, we reveal an influence of the metallic support onto the intermediate state of the diffusive motion.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQhy0EoqUwsyGPRSjFj9iOR0h5SYUuILFZTnJWXeVR4gSp_z1BDQyn-w3fne4-hC4pWVDC6K3NQ23rZiEyQqSmR2hKNZcRSeTn8X8WdILOQtgSIlSi5CmaMKE4TYieomXa1AHyvvPfgF8h39jahwr7GncbwEvvXB98U-PG4SVb4yFZ_GbTck4Jucb3vrR7aM_RibNlgIuxz9DH48N7-hyt1k8v6d0qsixWXSQEE8xy6ZIiiXPKlJBZASrTThZMOCE0GyopYgCuLWiIndIqgWIYLHIZ8xmaH_bu2uarh9CZyoccytLW0PTBUKmk0JJzNqBXI9pnFRRm1_rKtnvz9_kA3ByAQaHZNn1bD5cbSsyvVzN6NaNX_gPjNWcq</recordid><startdate>20150428</startdate><enddate>20150428</enddate><creator>Heidorn, Sarah-Charlotta</creator><creator>Bertram, Cord</creator><creator>Cabrera-Sanfelix, Pepa</creator><creator>Morgenstern, Karina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150428</creationdate><title>Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer</title><author>Heidorn, Sarah-Charlotta ; Bertram, Cord ; Cabrera-Sanfelix, Pepa ; Morgenstern, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-55252a36f8d84c12756bde7b9f6d25f55925598d4ee39ae9e4f7978ed552dc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidorn, Sarah-Charlotta</creatorcontrib><creatorcontrib>Bertram, Cord</creatorcontrib><creatorcontrib>Cabrera-Sanfelix, Pepa</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidorn, Sarah-Charlotta</au><au>Bertram, Cord</au><au>Cabrera-Sanfelix, Pepa</au><au>Morgenstern, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-04-28</date><risdate>2015</risdate><volume>9</volume><issue>4</issue><spage>3572</spage><epage>3578</epage><pages>3572-3578</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we derive the diffusion energy, the pre-exponential factor, and the attempt frequency. The mechanism of the motion is identified by comparison of the experimental results to theoretical calculations. Via low temperature adsorption site determination in connection with density functional theory, we reveal an influence of the metallic support onto the intermediate state of the diffusive motion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25731809</pmid><doi>10.1021/acsnano.5b00691</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-04, Vol.9 (4), p.3572-3578
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1676596332
source American Chemical Society Journals
title Consecutive Mechanism in the Diffusion of D2O on a NaCl(100) Bilayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consecutive%20Mechanism%20in%20the%20Diffusion%20of%20D2O%20on%20a%20NaCl(100)%20Bilayer&rft.jtitle=ACS%20nano&rft.au=Heidorn,%20Sarah-Charlotta&rft.date=2015-04-28&rft.volume=9&rft.issue=4&rft.spage=3572&rft.epage=3578&rft.pages=3572-3578&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b00691&rft_dat=%3Cproquest_pubme%3E1676596332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676596332&rft_id=info:pmid/25731809&rfr_iscdi=true