Modeling the short time-scale dynamics of β-amyloid–neuron interactions
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. De...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2013-08, Vol.331, p.28-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 28 |
container_title | Journal of theoretical biology |
container_volume | 331 |
creator | Wilson, Natasha P. Gates, Bradford Castellanos, Mariajosé |
description | Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated.
► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends. |
doi_str_mv | 10.1016/j.jtbi.2013.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676362523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519313000805</els_id><sourcerecordid>1676362523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EIkPgAiygl2y6U-Wf_pHYoAgCKBELyNry2NWJR93tYHuQZscduAkHySE4STyakCWsavO9p6evGHuJ0CBge7JpNnntGw4oGuANIH_EVgiDqnsl8TFbAXBeKxzEEXuW0gYABinap-yIC6kk9HzFPl8ER5Nfrqp8TVW6DjFX2c9UJ2smqtxuMbO3qQpjdfu7NvNuCt79-flroW0MS-WXTNHY7MOSnrMno5kSvbi_x-zyw_tvpx_r8y9nn07fnddWosi16ICAAziUZVmnrEAkaQZRhg-oOjX0one9GUfous6ORqzbjsyaeuGcHUZxzN4cem9i-L6llPXsk6VpMguFbdLYdq1oueLi_6hoFSgpEQvKD6iNIaVIo76JfjZxpxH0Xrfe6L1uvdetgeuiu4Re3fdv1zO5h8hfvwV4fQBGE7S5ij7py6-lQZVflI2yL8TbA0FF2Q9PUSfrabHkfCSbtQv-XwvuAJd9mnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365054411</pqid></control><display><type>article</type><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</creator><creatorcontrib>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</creatorcontrib><description>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated.
► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2013.02.012</identifier><identifier>PMID: 23454082</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Alzheimer disease ; Alzheimer's disease ; Amyloid beta-Peptides - pharmacology ; Animals ; Beta-amyloid ; Calcium ; Calcium - metabolism ; cell death ; Cell Membrane - drug effects ; Cell Membrane - physiology ; Cells, Cultured ; Computational modeling ; Computer Simulation ; death ; Dose-Response Relationship, Drug ; Electrophysiology ; etiology ; experimental design ; histopathology ; Humans ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Ion Transport - drug effects ; Kinetics ; mathematical models ; Membrane Potentials - drug effects ; Models, Neurological ; neurodegenerative diseases ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; potassium ; Rats ; Time Factors</subject><ispartof>Journal of theoretical biology, 2013-08, Vol.331, p.28-37</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</citedby><cites>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519313000805$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23454082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Natasha P.</creatorcontrib><creatorcontrib>Gates, Bradford</creatorcontrib><creatorcontrib>Castellanos, Mariajosé</creatorcontrib><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated.
► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</description><subject>Algorithms</subject><subject>Alzheimer disease</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - pharmacology</subject><subject>Animals</subject><subject>Beta-amyloid</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>cell death</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - physiology</subject><subject>Cells, Cultured</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>death</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophysiology</subject><subject>etiology</subject><subject>experimental design</subject><subject>histopathology</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion Transport - drug effects</subject><subject>Kinetics</subject><subject>mathematical models</subject><subject>Membrane Potentials - drug effects</subject><subject>Models, Neurological</subject><subject>neurodegenerative diseases</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>potassium</subject><subject>Rats</subject><subject>Time Factors</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0EIkPgAiygl2y6U-Wf_pHYoAgCKBELyNry2NWJR93tYHuQZscduAkHySE4STyakCWsavO9p6evGHuJ0CBge7JpNnntGw4oGuANIH_EVgiDqnsl8TFbAXBeKxzEEXuW0gYABinap-yIC6kk9HzFPl8ER5Nfrqp8TVW6DjFX2c9UJ2smqtxuMbO3qQpjdfu7NvNuCt79-flroW0MS-WXTNHY7MOSnrMno5kSvbi_x-zyw_tvpx_r8y9nn07fnddWosi16ICAAziUZVmnrEAkaQZRhg-oOjX0one9GUfous6ORqzbjsyaeuGcHUZxzN4cem9i-L6llPXsk6VpMguFbdLYdq1oueLi_6hoFSgpEQvKD6iNIaVIo76JfjZxpxH0Xrfe6L1uvdetgeuiu4Re3fdv1zO5h8hfvwV4fQBGE7S5ij7py6-lQZVflI2yL8TbA0FF2Q9PUSfrabHkfCSbtQv-XwvuAJd9mnk</recordid><startdate>20130821</startdate><enddate>20130821</enddate><creator>Wilson, Natasha P.</creator><creator>Gates, Bradford</creator><creator>Castellanos, Mariajosé</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20130821</creationdate><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><author>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Alzheimer disease</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - pharmacology</topic><topic>Animals</topic><topic>Beta-amyloid</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>cell death</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - physiology</topic><topic>Cells, Cultured</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>death</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophysiology</topic><topic>etiology</topic><topic>experimental design</topic><topic>histopathology</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion Transport - drug effects</topic><topic>Kinetics</topic><topic>mathematical models</topic><topic>Membrane Potentials - drug effects</topic><topic>Models, Neurological</topic><topic>neurodegenerative diseases</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>potassium</topic><topic>Rats</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Natasha P.</creatorcontrib><creatorcontrib>Gates, Bradford</creatorcontrib><creatorcontrib>Castellanos, Mariajosé</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Natasha P.</au><au>Gates, Bradford</au><au>Castellanos, Mariajosé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2013-08-21</date><risdate>2013</risdate><volume>331</volume><spage>28</spage><epage>37</epage><pages>28-37</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated.
► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23454082</pmid><doi>10.1016/j.jtbi.2013.02.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2013-08, Vol.331, p.28-37 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_1676362523 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Alzheimer disease Alzheimer's disease Amyloid beta-Peptides - pharmacology Animals Beta-amyloid Calcium Calcium - metabolism cell death Cell Membrane - drug effects Cell Membrane - physiology Cells, Cultured Computational modeling Computer Simulation death Dose-Response Relationship, Drug Electrophysiology etiology experimental design histopathology Humans Ion Channel Gating - drug effects Ion Channel Gating - physiology Ion Transport - drug effects Kinetics mathematical models Membrane Potentials - drug effects Models, Neurological neurodegenerative diseases Neurons - cytology Neurons - drug effects Neurons - physiology potassium Rats Time Factors |
title | Modeling the short time-scale dynamics of β-amyloid–neuron interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20short%20time-scale%20dynamics%20of%20%CE%B2-amyloid%E2%80%93neuron%20interactions&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Wilson,%20Natasha%20P.&rft.date=2013-08-21&rft.volume=331&rft.spage=28&rft.epage=37&rft.pages=28-37&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2013.02.012&rft_dat=%3Cproquest_cross%3E1676362523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365054411&rft_id=info:pmid/23454082&rft_els_id=S0022519313000805&rfr_iscdi=true |