Modeling the short time-scale dynamics of β-amyloid–neuron interactions

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2013-08, Vol.331, p.28-37
Hauptverfasser: Wilson, Natasha P., Gates, Bradford, Castellanos, Mariajosé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 28
container_title Journal of theoretical biology
container_volume 331
creator Wilson, Natasha P.
Gates, Bradford
Castellanos, Mariajosé
description Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated. ► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.
doi_str_mv 10.1016/j.jtbi.2013.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676362523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519313000805</els_id><sourcerecordid>1676362523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EIkPgAiygl2y6U-Wf_pHYoAgCKBELyNry2NWJR93tYHuQZscduAkHySE4STyakCWsavO9p6evGHuJ0CBge7JpNnntGw4oGuANIH_EVgiDqnsl8TFbAXBeKxzEEXuW0gYABinap-yIC6kk9HzFPl8ER5Nfrqp8TVW6DjFX2c9UJ2smqtxuMbO3qQpjdfu7NvNuCt79-flroW0MS-WXTNHY7MOSnrMno5kSvbi_x-zyw_tvpx_r8y9nn07fnddWosi16ICAAziUZVmnrEAkaQZRhg-oOjX0one9GUfous6ORqzbjsyaeuGcHUZxzN4cem9i-L6llPXsk6VpMguFbdLYdq1oueLi_6hoFSgpEQvKD6iNIaVIo76JfjZxpxH0Xrfe6L1uvdetgeuiu4Re3fdv1zO5h8hfvwV4fQBGE7S5ij7py6-lQZVflI2yL8TbA0FF2Q9PUSfrabHkfCSbtQv-XwvuAJd9mnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365054411</pqid></control><display><type>article</type><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</creator><creatorcontrib>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</creatorcontrib><description>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated. ► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2013.02.012</identifier><identifier>PMID: 23454082</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Alzheimer disease ; Alzheimer's disease ; Amyloid beta-Peptides - pharmacology ; Animals ; Beta-amyloid ; Calcium ; Calcium - metabolism ; cell death ; Cell Membrane - drug effects ; Cell Membrane - physiology ; Cells, Cultured ; Computational modeling ; Computer Simulation ; death ; Dose-Response Relationship, Drug ; Electrophysiology ; etiology ; experimental design ; histopathology ; Humans ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Ion Transport - drug effects ; Kinetics ; mathematical models ; Membrane Potentials - drug effects ; Models, Neurological ; neurodegenerative diseases ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; potassium ; Rats ; Time Factors</subject><ispartof>Journal of theoretical biology, 2013-08, Vol.331, p.28-37</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</citedby><cites>FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519313000805$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23454082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Natasha P.</creatorcontrib><creatorcontrib>Gates, Bradford</creatorcontrib><creatorcontrib>Castellanos, Mariajosé</creatorcontrib><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated. ► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</description><subject>Algorithms</subject><subject>Alzheimer disease</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - pharmacology</subject><subject>Animals</subject><subject>Beta-amyloid</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>cell death</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - physiology</subject><subject>Cells, Cultured</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>death</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophysiology</subject><subject>etiology</subject><subject>experimental design</subject><subject>histopathology</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion Transport - drug effects</subject><subject>Kinetics</subject><subject>mathematical models</subject><subject>Membrane Potentials - drug effects</subject><subject>Models, Neurological</subject><subject>neurodegenerative diseases</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>potassium</subject><subject>Rats</subject><subject>Time Factors</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0EIkPgAiygl2y6U-Wf_pHYoAgCKBELyNry2NWJR93tYHuQZscduAkHySE4STyakCWsavO9p6evGHuJ0CBge7JpNnntGw4oGuANIH_EVgiDqnsl8TFbAXBeKxzEEXuW0gYABinap-yIC6kk9HzFPl8ER5Nfrqp8TVW6DjFX2c9UJ2smqtxuMbO3qQpjdfu7NvNuCt79-flroW0MS-WXTNHY7MOSnrMno5kSvbi_x-zyw_tvpx_r8y9nn07fnddWosi16ICAAziUZVmnrEAkaQZRhg-oOjX0one9GUfous6ORqzbjsyaeuGcHUZxzN4cem9i-L6llPXsk6VpMguFbdLYdq1oueLi_6hoFSgpEQvKD6iNIaVIo76JfjZxpxH0Xrfe6L1uvdetgeuiu4Re3fdv1zO5h8hfvwV4fQBGE7S5ij7py6-lQZVflI2yL8TbA0FF2Q9PUSfrabHkfCSbtQv-XwvuAJd9mnk</recordid><startdate>20130821</startdate><enddate>20130821</enddate><creator>Wilson, Natasha P.</creator><creator>Gates, Bradford</creator><creator>Castellanos, Mariajosé</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20130821</creationdate><title>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</title><author>Wilson, Natasha P. ; Gates, Bradford ; Castellanos, Mariajosé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-370e0200d1419375c311e4a93095915759838d8aff0777cfa3b67eabe83ddc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Alzheimer disease</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - pharmacology</topic><topic>Animals</topic><topic>Beta-amyloid</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>cell death</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - physiology</topic><topic>Cells, Cultured</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>death</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophysiology</topic><topic>etiology</topic><topic>experimental design</topic><topic>histopathology</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion Transport - drug effects</topic><topic>Kinetics</topic><topic>mathematical models</topic><topic>Membrane Potentials - drug effects</topic><topic>Models, Neurological</topic><topic>neurodegenerative diseases</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>potassium</topic><topic>Rats</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Natasha P.</creatorcontrib><creatorcontrib>Gates, Bradford</creatorcontrib><creatorcontrib>Castellanos, Mariajosé</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Natasha P.</au><au>Gates, Bradford</au><au>Castellanos, Mariajosé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the short time-scale dynamics of β-amyloid–neuron interactions</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2013-08-21</date><risdate>2013</risdate><volume>331</volume><spage>28</spage><epage>37</epage><pages>28-37</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles. The primary protein components of these two histopathological features, β-amyloid peptide (Aβ) and tau, respectively, have been implicated in neuronal death. Despite extensive research into the disease etiology, its underlying molecular processes remain unknown. Researchers hypothesize that Aβ interacts with the cell surface preceding neuronal dysfunction and cell death; however, there is no consensus about the functional role of Aβ at the cell surface. Utilizing a mathematical model of a neuron, we compared simulation results under voltage-clamp, current-clamp and high [K+] membrane depolarized conditions of two hypothesized mechanisms of Aβ–neuron interactions: the Aβ blocking of fast-inactivating K+ (IA) channels and the Aβ-induced increase in membrane conductance. Our model predicts that both mechanisms may lead to changes in ion conductances, cell excitability and Ca2+ influx under voltage- and current-clamp conditions. Interestingly, membrane depolarization simulations predict very different correlations in Ca2+ influx between the two mechanisms and may provide data that distinguishes the mechanisms. Our results suggest that our computational modeling methodology may enhance experimental design such that mechanisms of Aβ-induced action on a neuron can be discriminated. ► Aβ-neuron simulations: fast-inactivating K+ channel and membrane conductance increase. ► Voltage-clamp simulation trends with experimental data of Aβ-neuron interactions. ► Current-clamp simulation distinguishes between mechanisms: threshold I vs. [Aβ]. ► High K+ membrane depolarization simulations provide intermediate Ca2+ trends. ► Block of IA channel by Aβ trends.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23454082</pmid><doi>10.1016/j.jtbi.2013.02.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2013-08, Vol.331, p.28-37
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_1676362523
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Alzheimer disease
Alzheimer's disease
Amyloid beta-Peptides - pharmacology
Animals
Beta-amyloid
Calcium
Calcium - metabolism
cell death
Cell Membrane - drug effects
Cell Membrane - physiology
Cells, Cultured
Computational modeling
Computer Simulation
death
Dose-Response Relationship, Drug
Electrophysiology
etiology
experimental design
histopathology
Humans
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Ion Transport - drug effects
Kinetics
mathematical models
Membrane Potentials - drug effects
Models, Neurological
neurodegenerative diseases
Neurons - cytology
Neurons - drug effects
Neurons - physiology
potassium
Rats
Time Factors
title Modeling the short time-scale dynamics of β-amyloid–neuron interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20short%20time-scale%20dynamics%20of%20%CE%B2-amyloid%E2%80%93neuron%20interactions&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Wilson,%20Natasha%20P.&rft.date=2013-08-21&rft.volume=331&rft.spage=28&rft.epage=37&rft.pages=28-37&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2013.02.012&rft_dat=%3Cproquest_cross%3E1676362523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365054411&rft_id=info:pmid/23454082&rft_els_id=S0022519313000805&rfr_iscdi=true