Complementary motion tuning in frontal nerve motor neurons of the blowfly
Flies actively turn their head during flight to stabilize their gaze and reduce motion blur. This optomotor response is triggered by wide-field motion indicating a deviation from a desired flight path. We focus on the neuronal circuit that underlies this behavior in the blowfly Calliphora, studying...
Gespeichert in:
Veröffentlicht in: | Journal of Comparative Physiology 2015-04, Vol.201 (4), p.411-426 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 4 |
container_start_page | 411 |
container_title | Journal of Comparative Physiology |
container_volume | 201 |
creator | Kauer, Isabella Borst, Alexander Haag, Jürgen |
description | Flies actively turn their head during flight to stabilize their gaze and reduce motion blur. This optomotor response is triggered by wide-field motion indicating a deviation from a desired flight path. We focus on the neuronal circuit that underlies this behavior in the blowfly Calliphora, studying the integration of optic flow in neck motor neurons that innervate muscles controlling head rotations. Frontal nerve motor neurons (FNMNs) have been described anatomically and recorded from extracellularly before. Here, we assign for the first time to five anatomical classes of FNMNs their visual motion tuning. We measured their responses to optic flow, as produced by rotations around particular body axes, recording intracellularly from single axons. Simultaneous injection of Neurobiotin allowed for the anatomical characterization of the recorded cells and revealed coupling patterns with neighboring neurons. The five FNMN classes can be divided into two groups that complement each other, regarding their preferred axes of rotation. The tuning matches the pulling planes of their innervated neck muscles, serving to rotate the head around its longitudinal axis. Anatomical and physiological findings demonstrate a synaptic connection between one FNMN and a well-described descending neuron, elucidating one important step from visual motion integration to neck motor output. |
doi_str_mv | 10.1007/s00359-015-0980-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676360250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3631401611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4bd1db8970151bbcc5ebde21b117da8d8b636acfcda5b89079f1882a2c6a69213</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVIyUwn-QHdtIZusnFyryQ_tAxDHwOBLJpZC8mWpx5saSrZCfPvI-NJKF2ULISEzneP7tUh5BPCDQIUtwGAZSIFzFIQJaRwRpbIGU2RZXhOlsA4pEUm-IJ8DGEPABQpXpAFzXKWF4wvyWbt-kNnemMH5Y9J74bW2WQYbWt3SWuTxruodIk1_slMsvPxPMbbkLgmGX6bRHfuuemOl-RDo7pgrk77imy_f3tc_0zvH35s1nf3acWpGFKua6x1KYrYNWpdVZnRtaGoEYtalXWpY2uqaqpaZRGDQjRYllTRKle5oMhW5Hr2PXj3ZzRhkH0bKtN1yho3Bol5ER2AZvAONM-p4DmyiH79B9270ds4yERxUVIOkyHOVOVdCN408uDbPn6cRJBTJHKORMbh5BSJnGo-n5xH3Zv6reI1gwjQGQhRsjvj_3r6P65f5qJGOal2vg1y-4tGAOISjAF7AeGNnuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664982400</pqid></control><display><type>article</type><title>Complementary motion tuning in frontal nerve motor neurons of the blowfly</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kauer, Isabella ; Borst, Alexander ; Haag, Jürgen</creator><creatorcontrib>Kauer, Isabella ; Borst, Alexander ; Haag, Jürgen</creatorcontrib><description>Flies actively turn their head during flight to stabilize their gaze and reduce motion blur. This optomotor response is triggered by wide-field motion indicating a deviation from a desired flight path. We focus on the neuronal circuit that underlies this behavior in the blowfly Calliphora, studying the integration of optic flow in neck motor neurons that innervate muscles controlling head rotations. Frontal nerve motor neurons (FNMNs) have been described anatomically and recorded from extracellularly before. Here, we assign for the first time to five anatomical classes of FNMNs their visual motion tuning. We measured their responses to optic flow, as produced by rotations around particular body axes, recording intracellularly from single axons. Simultaneous injection of Neurobiotin allowed for the anatomical characterization of the recorded cells and revealed coupling patterns with neighboring neurons. The five FNMN classes can be divided into two groups that complement each other, regarding their preferred axes of rotation. The tuning matches the pulling planes of their innervated neck muscles, serving to rotate the head around its longitudinal axis. Anatomical and physiological findings demonstrate a synaptic connection between one FNMN and a well-described descending neuron, elucidating one important step from visual motion integration to neck motor output.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-015-0980-0</identifier><identifier>PMID: 25636734</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animal Physiology ; Animals ; axons ; Biomedical and Life Sciences ; Biotin - analogs & derivatives ; Calliphora ; Calliphoridae ; Diptera - cytology ; Diptera - physiology ; Female ; flight ; Ganglia, Invertebrate - cytology ; Ganglia, Invertebrate - physiology ; head ; Head Movements - physiology ; Life Sciences ; Microelectrodes ; motor neurons ; Motor Neurons - cytology ; Motor Neurons - physiology ; muscles ; Muscles - physiology ; neck ; Neck - physiology ; nerve tissue ; Neuroanatomical Tract-Tracing Techniques ; Neurosciences ; Optic Flow ; Original Paper ; Photic Stimulation ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2015-04, Vol.201 (4), p.411-426</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4bd1db8970151bbcc5ebde21b117da8d8b636acfcda5b89079f1882a2c6a69213</citedby><cites>FETCH-LOGICAL-c429t-4bd1db8970151bbcc5ebde21b117da8d8b636acfcda5b89079f1882a2c6a69213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00359-015-0980-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00359-015-0980-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25636734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kauer, Isabella</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><creatorcontrib>Haag, Jürgen</creatorcontrib><title>Complementary motion tuning in frontal nerve motor neurons of the blowfly</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Flies actively turn their head during flight to stabilize their gaze and reduce motion blur. This optomotor response is triggered by wide-field motion indicating a deviation from a desired flight path. We focus on the neuronal circuit that underlies this behavior in the blowfly Calliphora, studying the integration of optic flow in neck motor neurons that innervate muscles controlling head rotations. Frontal nerve motor neurons (FNMNs) have been described anatomically and recorded from extracellularly before. Here, we assign for the first time to five anatomical classes of FNMNs their visual motion tuning. We measured their responses to optic flow, as produced by rotations around particular body axes, recording intracellularly from single axons. Simultaneous injection of Neurobiotin allowed for the anatomical characterization of the recorded cells and revealed coupling patterns with neighboring neurons. The five FNMN classes can be divided into two groups that complement each other, regarding their preferred axes of rotation. The tuning matches the pulling planes of their innervated neck muscles, serving to rotate the head around its longitudinal axis. Anatomical and physiological findings demonstrate a synaptic connection between one FNMN and a well-described descending neuron, elucidating one important step from visual motion integration to neck motor output.</description><subject>Animal Physiology</subject><subject>Animals</subject><subject>axons</subject><subject>Biomedical and Life Sciences</subject><subject>Biotin - analogs & derivatives</subject><subject>Calliphora</subject><subject>Calliphoridae</subject><subject>Diptera - cytology</subject><subject>Diptera - physiology</subject><subject>Female</subject><subject>flight</subject><subject>Ganglia, Invertebrate - cytology</subject><subject>Ganglia, Invertebrate - physiology</subject><subject>head</subject><subject>Head Movements - physiology</subject><subject>Life Sciences</subject><subject>Microelectrodes</subject><subject>motor neurons</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>muscles</subject><subject>Muscles - physiology</subject><subject>neck</subject><subject>Neck - physiology</subject><subject>nerve tissue</subject><subject>Neuroanatomical Tract-Tracing Techniques</subject><subject>Neurosciences</subject><subject>Optic Flow</subject><subject>Original Paper</subject><subject>Photic Stimulation</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtr3DAUhUVIyUwn-QHdtIZusnFyryQ_tAxDHwOBLJpZC8mWpx5saSrZCfPvI-NJKF2ULISEzneP7tUh5BPCDQIUtwGAZSIFzFIQJaRwRpbIGU2RZXhOlsA4pEUm-IJ8DGEPABQpXpAFzXKWF4wvyWbt-kNnemMH5Y9J74bW2WQYbWt3SWuTxruodIk1_slMsvPxPMbbkLgmGX6bRHfuuemOl-RDo7pgrk77imy_f3tc_0zvH35s1nf3acWpGFKua6x1KYrYNWpdVZnRtaGoEYtalXWpY2uqaqpaZRGDQjRYllTRKle5oMhW5Hr2PXj3ZzRhkH0bKtN1yho3Bol5ER2AZvAONM-p4DmyiH79B9270ds4yERxUVIOkyHOVOVdCN408uDbPn6cRJBTJHKORMbh5BSJnGo-n5xH3Zv6reI1gwjQGQhRsjvj_3r6P65f5qJGOal2vg1y-4tGAOISjAF7AeGNnuo</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Kauer, Isabella</creator><creator>Borst, Alexander</creator><creator>Haag, Jürgen</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150401</creationdate><title>Complementary motion tuning in frontal nerve motor neurons of the blowfly</title><author>Kauer, Isabella ; Borst, Alexander ; Haag, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4bd1db8970151bbcc5ebde21b117da8d8b636acfcda5b89079f1882a2c6a69213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal Physiology</topic><topic>Animals</topic><topic>axons</topic><topic>Biomedical and Life Sciences</topic><topic>Biotin - analogs & derivatives</topic><topic>Calliphora</topic><topic>Calliphoridae</topic><topic>Diptera - cytology</topic><topic>Diptera - physiology</topic><topic>Female</topic><topic>flight</topic><topic>Ganglia, Invertebrate - cytology</topic><topic>Ganglia, Invertebrate - physiology</topic><topic>head</topic><topic>Head Movements - physiology</topic><topic>Life Sciences</topic><topic>Microelectrodes</topic><topic>motor neurons</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>muscles</topic><topic>Muscles - physiology</topic><topic>neck</topic><topic>Neck - physiology</topic><topic>nerve tissue</topic><topic>Neuroanatomical Tract-Tracing Techniques</topic><topic>Neurosciences</topic><topic>Optic Flow</topic><topic>Original Paper</topic><topic>Photic Stimulation</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kauer, Isabella</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><creatorcontrib>Haag, Jürgen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kauer, Isabella</au><au>Borst, Alexander</au><au>Haag, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary motion tuning in frontal nerve motor neurons of the blowfly</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>201</volume><issue>4</issue><spage>411</spage><epage>426</epage><pages>411-426</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Flies actively turn their head during flight to stabilize their gaze and reduce motion blur. This optomotor response is triggered by wide-field motion indicating a deviation from a desired flight path. We focus on the neuronal circuit that underlies this behavior in the blowfly Calliphora, studying the integration of optic flow in neck motor neurons that innervate muscles controlling head rotations. Frontal nerve motor neurons (FNMNs) have been described anatomically and recorded from extracellularly before. Here, we assign for the first time to five anatomical classes of FNMNs their visual motion tuning. We measured their responses to optic flow, as produced by rotations around particular body axes, recording intracellularly from single axons. Simultaneous injection of Neurobiotin allowed for the anatomical characterization of the recorded cells and revealed coupling patterns with neighboring neurons. The five FNMN classes can be divided into two groups that complement each other, regarding their preferred axes of rotation. The tuning matches the pulling planes of their innervated neck muscles, serving to rotate the head around its longitudinal axis. Anatomical and physiological findings demonstrate a synaptic connection between one FNMN and a well-described descending neuron, elucidating one important step from visual motion integration to neck motor output.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25636734</pmid><doi>10.1007/s00359-015-0980-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7594 |
ispartof | Journal of Comparative Physiology, 2015-04, Vol.201 (4), p.411-426 |
issn | 0340-7594 1432-1351 |
language | eng |
recordid | cdi_proquest_miscellaneous_1676360250 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animal Physiology Animals axons Biomedical and Life Sciences Biotin - analogs & derivatives Calliphora Calliphoridae Diptera - cytology Diptera - physiology Female flight Ganglia, Invertebrate - cytology Ganglia, Invertebrate - physiology head Head Movements - physiology Life Sciences Microelectrodes motor neurons Motor Neurons - cytology Motor Neurons - physiology muscles Muscles - physiology neck Neck - physiology nerve tissue Neuroanatomical Tract-Tracing Techniques Neurosciences Optic Flow Original Paper Photic Stimulation Zoology |
title | Complementary motion tuning in frontal nerve motor neurons of the blowfly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20motion%20tuning%20in%20frontal%20nerve%20motor%20neurons%20of%20the%20blowfly&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Kauer,%20Isabella&rft.date=2015-04-01&rft.volume=201&rft.issue=4&rft.spage=411&rft.epage=426&rft.pages=411-426&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-015-0980-0&rft_dat=%3Cproquest_cross%3E3631401611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664982400&rft_id=info:pmid/25636734&rfr_iscdi=true |