Modelling the emergent dynamics and major metabolites of the human colonic microbiota
Summary We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod‐equation based, differential equation model, which produces computer simulations of the population dynamics and major...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2015-05, Vol.17 (5), p.1615-1630 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1630 |
---|---|
container_issue | 5 |
container_start_page | 1615 |
container_title | Environmental microbiology |
container_volume | 17 |
creator | Kettle, Helen Louis, Petra Holtrop, Grietje Duncan, Sylvia H. Flint, Harry J. |
description | Summary
We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod‐equation based, differential equation model, which produces computer simulations of the population dynamics and major metabolites of microbial communities from the human colon. To reduce the complexity of the system, we divide the bacterial community into 10 bacterial functional groups (BFGs) each distinguished by its substrate preferences, metabolic pathways and its preferred pH range. The model simulates the growth of a large number of bacterial strains and incorporates variation in microbiota composition between people, while also allowing succession and enabling adaptation to environmental changes. The model is shown to reproduce many of the observed changes in major phylogenetic groups and key metabolites such as butyrate, acetate and propionate in response to a one unit pH shift in experimental continuous flow fermentors inoculated with human faecal microbiota. Nevertheless, it should be regarded as a learning tool to be updated as our knowledge of bacterial groups and their interactions expands. Given the difficulty of accessing the colon, modelling can play an extremely important role in interpreting experimental data and predicting the consequences of dietary modulation. |
doi_str_mv | 10.1111/1462-2920.12599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676339837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3663886971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4509-53d1840aee4dee05b21acd9c0a63677a9cf3bdbdd53772e8de3e8098536c2e923</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0E4ntmQ5ZYWAL-iJN4BAS0EoUFhMRiOfYVXJIY7ETQ_x6XQgcWvJxt_d7T3TuEDig5oemc0rxgGZMsPZmQcg1tr37WV3fKttBOjDNCaMlLsom2mKA5qzjdRg8Tb6FpXPeM-xfA0EJ4hq7Hdt7p1pmIdWdxq2c-4BZ6XfvG9RCxn37jL0OrO2x84ztncOKDr53v9R7amOomwv5P3UUPV5f3F6Ps5u56fHF2k5lcEJkJbmmVEw2QWwAiaka1sdIQXfCiLLU0U17b2lrBy5JBZYFDRWQleGEYSMZ30fHS9y349wFir1oXTZpHd-CHqGhRFpzLipcJPfqDzvwQutTdghKUMkLyRJ0uqTRJjAGm6i24Voe5okQtEleLTNUiX_WdeFIc_vgOdQt2xf9GnACxBD5cA_P__NTlZPxrnC11LvbwudLp8KqKtEahHm-vFTnn7IqNJuqJfwHngJko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675112004</pqid></control><display><type>article</type><title>Modelling the emergent dynamics and major metabolites of the human colonic microbiota</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kettle, Helen ; Louis, Petra ; Holtrop, Grietje ; Duncan, Sylvia H. ; Flint, Harry J.</creator><creatorcontrib>Kettle, Helen ; Louis, Petra ; Holtrop, Grietje ; Duncan, Sylvia H. ; Flint, Harry J.</creatorcontrib><description>Summary
We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod‐equation based, differential equation model, which produces computer simulations of the population dynamics and major metabolites of microbial communities from the human colon. To reduce the complexity of the system, we divide the bacterial community into 10 bacterial functional groups (BFGs) each distinguished by its substrate preferences, metabolic pathways and its preferred pH range. The model simulates the growth of a large number of bacterial strains and incorporates variation in microbiota composition between people, while also allowing succession and enabling adaptation to environmental changes. The model is shown to reproduce many of the observed changes in major phylogenetic groups and key metabolites such as butyrate, acetate and propionate in response to a one unit pH shift in experimental continuous flow fermentors inoculated with human faecal microbiota. Nevertheless, it should be regarded as a learning tool to be updated as our knowledge of bacterial groups and their interactions expands. Given the difficulty of accessing the colon, modelling can play an extremely important role in interpreting experimental data and predicting the consequences of dietary modulation.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12599</identifier><identifier>PMID: 25142831</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetates - metabolism ; Biodiversity ; Butyrates - metabolism ; Colon ; Colon - microbiology ; Computer Simulation ; Diet ; Feces - microbiology ; Humans ; Metabolites ; Microbiota ; Models, Theoretical ; Phylogeny ; Propionates - metabolism</subject><ispartof>Environmental microbiology, 2015-05, Vol.17 (5), p.1615-1630</ispartof><rights>2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4509-53d1840aee4dee05b21acd9c0a63677a9cf3bdbdd53772e8de3e8098536c2e923</citedby><cites>FETCH-LOGICAL-c4509-53d1840aee4dee05b21acd9c0a63677a9cf3bdbdd53772e8de3e8098536c2e923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.12599$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.12599$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25142831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kettle, Helen</creatorcontrib><creatorcontrib>Louis, Petra</creatorcontrib><creatorcontrib>Holtrop, Grietje</creatorcontrib><creatorcontrib>Duncan, Sylvia H.</creatorcontrib><creatorcontrib>Flint, Harry J.</creatorcontrib><title>Modelling the emergent dynamics and major metabolites of the human colonic microbiota</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod‐equation based, differential equation model, which produces computer simulations of the population dynamics and major metabolites of microbial communities from the human colon. To reduce the complexity of the system, we divide the bacterial community into 10 bacterial functional groups (BFGs) each distinguished by its substrate preferences, metabolic pathways and its preferred pH range. The model simulates the growth of a large number of bacterial strains and incorporates variation in microbiota composition between people, while also allowing succession and enabling adaptation to environmental changes. The model is shown to reproduce many of the observed changes in major phylogenetic groups and key metabolites such as butyrate, acetate and propionate in response to a one unit pH shift in experimental continuous flow fermentors inoculated with human faecal microbiota. Nevertheless, it should be regarded as a learning tool to be updated as our knowledge of bacterial groups and their interactions expands. Given the difficulty of accessing the colon, modelling can play an extremely important role in interpreting experimental data and predicting the consequences of dietary modulation.</description><subject>Acetates - metabolism</subject><subject>Biodiversity</subject><subject>Butyrates - metabolism</subject><subject>Colon</subject><subject>Colon - microbiology</subject><subject>Computer Simulation</subject><subject>Diet</subject><subject>Feces - microbiology</subject><subject>Humans</subject><subject>Metabolites</subject><subject>Microbiota</subject><subject>Models, Theoretical</subject><subject>Phylogeny</subject><subject>Propionates - metabolism</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkb1PwzAQxS0E4ntmQ5ZYWAL-iJN4BAS0EoUFhMRiOfYVXJIY7ETQ_x6XQgcWvJxt_d7T3TuEDig5oemc0rxgGZMsPZmQcg1tr37WV3fKttBOjDNCaMlLsom2mKA5qzjdRg8Tb6FpXPeM-xfA0EJ4hq7Hdt7p1pmIdWdxq2c-4BZ6XfvG9RCxn37jL0OrO2x84ztncOKDr53v9R7amOomwv5P3UUPV5f3F6Ps5u56fHF2k5lcEJkJbmmVEw2QWwAiaka1sdIQXfCiLLU0U17b2lrBy5JBZYFDRWQleGEYSMZ30fHS9y349wFir1oXTZpHd-CHqGhRFpzLipcJPfqDzvwQutTdghKUMkLyRJ0uqTRJjAGm6i24Voe5okQtEleLTNUiX_WdeFIc_vgOdQt2xf9GnACxBD5cA_P__NTlZPxrnC11LvbwudLp8KqKtEahHm-vFTnn7IqNJuqJfwHngJko</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Kettle, Helen</creator><creator>Louis, Petra</creator><creator>Holtrop, Grietje</creator><creator>Duncan, Sylvia H.</creator><creator>Flint, Harry J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201505</creationdate><title>Modelling the emergent dynamics and major metabolites of the human colonic microbiota</title><author>Kettle, Helen ; Louis, Petra ; Holtrop, Grietje ; Duncan, Sylvia H. ; Flint, Harry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4509-53d1840aee4dee05b21acd9c0a63677a9cf3bdbdd53772e8de3e8098536c2e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetates - metabolism</topic><topic>Biodiversity</topic><topic>Butyrates - metabolism</topic><topic>Colon</topic><topic>Colon - microbiology</topic><topic>Computer Simulation</topic><topic>Diet</topic><topic>Feces - microbiology</topic><topic>Humans</topic><topic>Metabolites</topic><topic>Microbiota</topic><topic>Models, Theoretical</topic><topic>Phylogeny</topic><topic>Propionates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kettle, Helen</creatorcontrib><creatorcontrib>Louis, Petra</creatorcontrib><creatorcontrib>Holtrop, Grietje</creatorcontrib><creatorcontrib>Duncan, Sylvia H.</creatorcontrib><creatorcontrib>Flint, Harry J.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kettle, Helen</au><au>Louis, Petra</au><au>Holtrop, Grietje</au><au>Duncan, Sylvia H.</au><au>Flint, Harry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the emergent dynamics and major metabolites of the human colonic microbiota</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2015-05</date><risdate>2015</risdate><volume>17</volume><issue>5</issue><spage>1615</spage><epage>1630</epage><pages>1615-1630</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod‐equation based, differential equation model, which produces computer simulations of the population dynamics and major metabolites of microbial communities from the human colon. To reduce the complexity of the system, we divide the bacterial community into 10 bacterial functional groups (BFGs) each distinguished by its substrate preferences, metabolic pathways and its preferred pH range. The model simulates the growth of a large number of bacterial strains and incorporates variation in microbiota composition between people, while also allowing succession and enabling adaptation to environmental changes. The model is shown to reproduce many of the observed changes in major phylogenetic groups and key metabolites such as butyrate, acetate and propionate in response to a one unit pH shift in experimental continuous flow fermentors inoculated with human faecal microbiota. Nevertheless, it should be regarded as a learning tool to be updated as our knowledge of bacterial groups and their interactions expands. Given the difficulty of accessing the colon, modelling can play an extremely important role in interpreting experimental data and predicting the consequences of dietary modulation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25142831</pmid><doi>10.1111/1462-2920.12599</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2015-05, Vol.17 (5), p.1615-1630 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_1676339837 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetates - metabolism Biodiversity Butyrates - metabolism Colon Colon - microbiology Computer Simulation Diet Feces - microbiology Humans Metabolites Microbiota Models, Theoretical Phylogeny Propionates - metabolism |
title | Modelling the emergent dynamics and major metabolites of the human colonic microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20emergent%20dynamics%20and%20major%20metabolites%20of%20the%20human%20colonic%20microbiota&rft.jtitle=Environmental%20microbiology&rft.au=Kettle,%20Helen&rft.date=2015-05&rft.volume=17&rft.issue=5&rft.spage=1615&rft.epage=1630&rft.pages=1615-1630&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12599&rft_dat=%3Cproquest_cross%3E3663886971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675112004&rft_id=info:pmid/25142831&rfr_iscdi=true |