Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data

Distance methods for producing phylogenies require n super(2) comparisons among n taxa to generate a complete matrix. Moreover, techniques for generating distances-such as DNA hybridization-are subject to both systematic and random experimental errors, so that the measurements do not satisfy the mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 1995-03, Vol.12 (2), p.266-284
Hauptverfasser: Lapointe, F J, Kirsch, JAW
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 2
container_start_page 266
container_title Molecular biology and evolution
container_volume 12
creator Lapointe, F J
Kirsch, JAW
description Distance methods for producing phylogenies require n super(2) comparisons among n taxa to generate a complete matrix. Moreover, techniques for generating distances-such as DNA hybridization-are subject to both systematic and random experimental errors, so that the measurements do not satisfy the mathematical properties of distances. We have explored the possibility of reconstructing trees from incomplete data. In our simulations, we discard one or both of reciprocal pairs from a complete matrix, estimate these values, reconstruct a tree, and compare the topology and branch lengths of the estimated tree with the phylogeny based on complete data. We investigated separately and jointly the effects of rate variation and random and systematic errors, added to a fabricated ultrametric matrix, and then passed on to simulation experiments with several complete DNA hybridization matrices. Our empirical results show that topological and metric recovery is always very good provided no terminal sister taxa lack both reciprocal measurements or extremely short internodes are involved. We then present two applications of the method for estimating phylogenies from incomplete DNA hybridization matrices-the first illustrating reconstruction of a matrix with about 27% of missing cells, and the second suturing two matrices where some data are held in common but 29% are missing from the combined table. Thus, considerable information may be implicit in very sparse matrices, and this circumstance has practical consequences for distance studies when money, material, or time are limited.
doi_str_mv 10.1093/oxfordjournals.molbev.a040209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16762533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16762533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3ed9280936e0e10b63fa3c57f4c809b759f4d7b13fc9cc0ab2de8fe67c97c7723</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EEqXwD97AihQ7TuJmwaJqC0UqD_FYW44zbl0lcbGdQvl6UrULWM3V6Ohq5iB0ScmAkpzd2G9tXbmyrWtk5Qe1rQrYDCRJSEzyI9SjKeMR5TQ__pNP0Zn3K0JokmRZDy2nPphaBtMs8MtyW9kFNAY81s7WeC5V21gPeGJ8kI0C_CiDMwr8Nf4yYYnf1qCMrPAraHCwA4LFk6cRnm0LZ0rz0xXbBk9kkOfoRHdXwsVh9tHH3fR9PIvmz_cP49E8UixlIWJQ5vGw-y4DApQUGdOSqZTrRHXbgqe5TkpeUKZVrhSRRVzCUEPGVc4V5zHro6t979rZzxZ8ELXxCqpKNmBbL2jGszhlrANv96By1nsHWqxdZ8JtBSVi51f89yv2fsXBL_sFEth4tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16762533</pqid></control><display><type>article</type><title>Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Lapointe, F J ; Kirsch, JAW</creator><creatorcontrib>Lapointe, F J ; Kirsch, JAW</creatorcontrib><description>Distance methods for producing phylogenies require n super(2) comparisons among n taxa to generate a complete matrix. Moreover, techniques for generating distances-such as DNA hybridization-are subject to both systematic and random experimental errors, so that the measurements do not satisfy the mathematical properties of distances. We have explored the possibility of reconstructing trees from incomplete data. In our simulations, we discard one or both of reciprocal pairs from a complete matrix, estimate these values, reconstruct a tree, and compare the topology and branch lengths of the estimated tree with the phylogeny based on complete data. We investigated separately and jointly the effects of rate variation and random and systematic errors, added to a fabricated ultrametric matrix, and then passed on to simulation experiments with several complete DNA hybridization matrices. Our empirical results show that topological and metric recovery is always very good provided no terminal sister taxa lack both reciprocal measurements or extremely short internodes are involved. We then present two applications of the method for estimating phylogenies from incomplete DNA hybridization matrices-the first illustrating reconstruction of a matrix with about 27% of missing cells, and the second suturing two matrices where some data are held in common but 29% are missing from the combined table. Thus, considerable information may be implicit in very sparse matrices, and this circumstance has practical consequences for distance studies when money, material, or time are limited.</description><identifier>ISSN: 1537-1719</identifier><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/oxfordjournals.molbev.a040209</identifier><language>eng</language><ispartof>Molecular biology and evolution, 1995-03, Vol.12 (2), p.266-284</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3ed9280936e0e10b63fa3c57f4c809b759f4d7b13fc9cc0ab2de8fe67c97c7723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lapointe, F J</creatorcontrib><creatorcontrib>Kirsch, JAW</creatorcontrib><title>Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data</title><title>Molecular biology and evolution</title><description>Distance methods for producing phylogenies require n super(2) comparisons among n taxa to generate a complete matrix. Moreover, techniques for generating distances-such as DNA hybridization-are subject to both systematic and random experimental errors, so that the measurements do not satisfy the mathematical properties of distances. We have explored the possibility of reconstructing trees from incomplete data. In our simulations, we discard one or both of reciprocal pairs from a complete matrix, estimate these values, reconstruct a tree, and compare the topology and branch lengths of the estimated tree with the phylogeny based on complete data. We investigated separately and jointly the effects of rate variation and random and systematic errors, added to a fabricated ultrametric matrix, and then passed on to simulation experiments with several complete DNA hybridization matrices. Our empirical results show that topological and metric recovery is always very good provided no terminal sister taxa lack both reciprocal measurements or extremely short internodes are involved. We then present two applications of the method for estimating phylogenies from incomplete DNA hybridization matrices-the first illustrating reconstruction of a matrix with about 27% of missing cells, and the second suturing two matrices where some data are held in common but 29% are missing from the combined table. Thus, considerable information may be implicit in very sparse matrices, and this circumstance has practical consequences for distance studies when money, material, or time are limited.</description><issn>1537-1719</issn><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EEqXwD97AihQ7TuJmwaJqC0UqD_FYW44zbl0lcbGdQvl6UrULWM3V6Ohq5iB0ScmAkpzd2G9tXbmyrWtk5Qe1rQrYDCRJSEzyI9SjKeMR5TQ__pNP0Zn3K0JokmRZDy2nPphaBtMs8MtyW9kFNAY81s7WeC5V21gPeGJ8kI0C_CiDMwr8Nf4yYYnf1qCMrPAraHCwA4LFk6cRnm0LZ0rz0xXbBk9kkOfoRHdXwsVh9tHH3fR9PIvmz_cP49E8UixlIWJQ5vGw-y4DApQUGdOSqZTrRHXbgqe5TkpeUKZVrhSRRVzCUEPGVc4V5zHro6t979rZzxZ8ELXxCqpKNmBbL2jGszhlrANv96By1nsHWqxdZ8JtBSVi51f89yv2fsXBL_sFEth4tg</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Lapointe, F J</creator><creator>Kirsch, JAW</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19950301</creationdate><title>Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data</title><author>Lapointe, F J ; Kirsch, JAW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3ed9280936e0e10b63fa3c57f4c809b759f4d7b13fc9cc0ab2de8fe67c97c7723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapointe, F J</creatorcontrib><creatorcontrib>Kirsch, JAW</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapointe, F J</au><au>Kirsch, JAW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data</atitle><jtitle>Molecular biology and evolution</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>12</volume><issue>2</issue><spage>266</spage><epage>284</epage><pages>266-284</pages><issn>1537-1719</issn><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Distance methods for producing phylogenies require n super(2) comparisons among n taxa to generate a complete matrix. Moreover, techniques for generating distances-such as DNA hybridization-are subject to both systematic and random experimental errors, so that the measurements do not satisfy the mathematical properties of distances. We have explored the possibility of reconstructing trees from incomplete data. In our simulations, we discard one or both of reciprocal pairs from a complete matrix, estimate these values, reconstruct a tree, and compare the topology and branch lengths of the estimated tree with the phylogeny based on complete data. We investigated separately and jointly the effects of rate variation and random and systematic errors, added to a fabricated ultrametric matrix, and then passed on to simulation experiments with several complete DNA hybridization matrices. Our empirical results show that topological and metric recovery is always very good provided no terminal sister taxa lack both reciprocal measurements or extremely short internodes are involved. We then present two applications of the method for estimating phylogenies from incomplete DNA hybridization matrices-the first illustrating reconstruction of a matrix with about 27% of missing cells, and the second suturing two matrices where some data are held in common but 29% are missing from the combined table. Thus, considerable information may be implicit in very sparse matrices, and this circumstance has practical consequences for distance studies when money, material, or time are limited.</abstract><doi>10.1093/oxfordjournals.molbev.a040209</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1537-1719
ispartof Molecular biology and evolution, 1995-03, Vol.12 (2), p.266-284
issn 1537-1719
0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_16762533
source Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Oxford University Press Journals Digital Archive Legacy
title Estimating Phylogenies from Lacunose Distance Matrices, with Special Reference to DNA Hybridization Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Phylogenies%20from%20Lacunose%20Distance%20Matrices,%20with%20Special%20Reference%20to%20DNA%20Hybridization%20Data&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Lapointe,%20F%20J&rft.date=1995-03-01&rft.volume=12&rft.issue=2&rft.spage=266&rft.epage=284&rft.pages=266-284&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093/oxfordjournals.molbev.a040209&rft_dat=%3Cproquest_cross%3E16762533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16762533&rft_id=info:pmid/&rfr_iscdi=true