WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed

Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that woundi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant research 2015-05, Vol.128 (3), p.389-397
Hauptverfasser: Iwase, Akira, Mita, Kento, Nonaka, Satoko, Ikeuchi, Momoko, Koizuka, Chie, Ohnuma, Mariko, Ezura, Hiroshi, Imamura, Jun, Sugimoto, Keiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 3
container_start_page 389
container_title Journal of plant research
container_volume 128
creator Iwase, Akira
Mita, Kento
Nonaka, Satoko
Ikeuchi, Momoko
Koizuka, Chie
Ohnuma, Mariko
Ezura, Hiroshi
Imamura, Jun
Sugimoto, Keiko
description Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana . Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus , activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.
doi_str_mv 10.1007/s10265-015-0714-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1675878366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675878366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-23cd888d394e6fa42e3e1ceb0d422751c278ff31c00a016e1680a34c02353f263</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk5_gDdS8Mab6jlJm2aXY34NxrxRvAxZejo6trZL1ov-e7MPRQQvQhLyvO8JD2PXCPcIkD14BC7TGDCsDJO4O2F9lKhiUBJOWR-G4TxMEuixC--XAJilQ3XOejxVIcp5n80-J7NHjOfGUx4Zu2lLX27LuorqInK0oIqc2d9tvW5oS5XtorKKRs7My7xufOkjU-WRMw15ovySnRVm5enquA_Yx_PT-_g1nr69TMajaWwl59uYC5srpXIxTEgWJuEkCC3NIU84z1K0PFNFIdACGEBJKBUYkVjgIhUFl2LA7g69jas3LfmtXpfe0mplKqpbr1FmqcqUkDv09g-6rFtXhd_tKcQ04RgoPFDW1d47KnTjyrVxnUbQO9n6IFsH2XonW3chc3Nsbudryn8S33YDwA-AD0_Vgtyv0f-2fgHfLoin</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675115421</pqid></control><display><type>article</type><title>WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Iwase, Akira ; Mita, Kento ; Nonaka, Satoko ; Ikeuchi, Momoko ; Koizuka, Chie ; Ohnuma, Mariko ; Ezura, Hiroshi ; Imamura, Jun ; Sugimoto, Keiko</creator><creatorcontrib>Iwase, Akira ; Mita, Kento ; Nonaka, Satoko ; Ikeuchi, Momoko ; Koizuka, Chie ; Ohnuma, Mariko ; Ezura, Hiroshi ; Imamura, Jun ; Sugimoto, Keiko</creatorcontrib><description>Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana . Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus , activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.</description><identifier>ISSN: 0918-9440</identifier><identifier>EISSN: 1618-0860</identifier><identifier>DOI: 10.1007/s10265-015-0714-y</identifier><identifier>PMID: 25810222</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biomedical and Life Sciences ; Brassica napus - genetics ; Brassica napus - physiology ; Flowers &amp; plants ; Gene expression ; Indoleacetic Acids - metabolism ; JPR Symposium ; Life Sciences ; Molecular biology ; Organ Specificity ; Plant Biochemistry ; Plant biology ; Plant Ecology ; Plant Growth Regulators - metabolism ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - physiology ; Plant Sciences ; Plant Shoots - genetics ; Plant Shoots - physiology ; Plant Somatic Embryogenesis Techniques ; Plant tissues ; Plants, Genetically Modified ; Regeneration ; Tissue engineering ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Journal of plant research, 2015-05, Vol.128 (3), p.389-397</ispartof><rights>The Botanical Society of Japan and Springer Japan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-23cd888d394e6fa42e3e1ceb0d422751c278ff31c00a016e1680a34c02353f263</citedby><cites>FETCH-LOGICAL-c622t-23cd888d394e6fa42e3e1ceb0d422751c278ff31c00a016e1680a34c02353f263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10265-015-0714-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10265-015-0714-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25810222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwase, Akira</creatorcontrib><creatorcontrib>Mita, Kento</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Ikeuchi, Momoko</creatorcontrib><creatorcontrib>Koizuka, Chie</creatorcontrib><creatorcontrib>Ohnuma, Mariko</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><creatorcontrib>Imamura, Jun</creatorcontrib><creatorcontrib>Sugimoto, Keiko</creatorcontrib><title>WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed</title><title>Journal of plant research</title><addtitle>J Plant Res</addtitle><addtitle>J Plant Res</addtitle><description>Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana . Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus , activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - physiology</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Indoleacetic Acids - metabolism</subject><subject>JPR Symposium</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Organ Specificity</subject><subject>Plant Biochemistry</subject><subject>Plant biology</subject><subject>Plant Ecology</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plant Sciences</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - physiology</subject><subject>Plant Somatic Embryogenesis Techniques</subject><subject>Plant tissues</subject><subject>Plants, Genetically Modified</subject><subject>Regeneration</subject><subject>Tissue engineering</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0918-9440</issn><issn>1618-0860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMobk5_gDdS8Mab6jlJm2aXY34NxrxRvAxZejo6trZL1ov-e7MPRQQvQhLyvO8JD2PXCPcIkD14BC7TGDCsDJO4O2F9lKhiUBJOWR-G4TxMEuixC--XAJilQ3XOejxVIcp5n80-J7NHjOfGUx4Zu2lLX27LuorqInK0oIqc2d9tvW5oS5XtorKKRs7My7xufOkjU-WRMw15ovySnRVm5enquA_Yx_PT-_g1nr69TMajaWwl59uYC5srpXIxTEgWJuEkCC3NIU84z1K0PFNFIdACGEBJKBUYkVjgIhUFl2LA7g69jas3LfmtXpfe0mplKqpbr1FmqcqUkDv09g-6rFtXhd_tKcQ04RgoPFDW1d47KnTjyrVxnUbQO9n6IFsH2XonW3chc3Nsbudryn8S33YDwA-AD0_Vgtyv0f-2fgHfLoin</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Iwase, Akira</creator><creator>Mita, Kento</creator><creator>Nonaka, Satoko</creator><creator>Ikeuchi, Momoko</creator><creator>Koizuka, Chie</creator><creator>Ohnuma, Mariko</creator><creator>Ezura, Hiroshi</creator><creator>Imamura, Jun</creator><creator>Sugimoto, Keiko</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7ST</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed</title><author>Iwase, Akira ; Mita, Kento ; Nonaka, Satoko ; Ikeuchi, Momoko ; Koizuka, Chie ; Ohnuma, Mariko ; Ezura, Hiroshi ; Imamura, Jun ; Sugimoto, Keiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-23cd888d394e6fa42e3e1ceb0d422751c278ff31c00a016e1680a34c02353f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - physiology</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Indoleacetic Acids - metabolism</topic><topic>JPR Symposium</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Organ Specificity</topic><topic>Plant Biochemistry</topic><topic>Plant biology</topic><topic>Plant Ecology</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plant Sciences</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - physiology</topic><topic>Plant Somatic Embryogenesis Techniques</topic><topic>Plant tissues</topic><topic>Plants, Genetically Modified</topic><topic>Regeneration</topic><topic>Tissue engineering</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwase, Akira</creatorcontrib><creatorcontrib>Mita, Kento</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Ikeuchi, Momoko</creatorcontrib><creatorcontrib>Koizuka, Chie</creatorcontrib><creatorcontrib>Ohnuma, Mariko</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><creatorcontrib>Imamura, Jun</creatorcontrib><creatorcontrib>Sugimoto, Keiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of plant research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwase, Akira</au><au>Mita, Kento</au><au>Nonaka, Satoko</au><au>Ikeuchi, Momoko</au><au>Koizuka, Chie</au><au>Ohnuma, Mariko</au><au>Ezura, Hiroshi</au><au>Imamura, Jun</au><au>Sugimoto, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed</atitle><jtitle>Journal of plant research</jtitle><stitle>J Plant Res</stitle><addtitle>J Plant Res</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>128</volume><issue>3</issue><spage>389</spage><epage>397</epage><pages>389-397</pages><issn>0918-9440</issn><eissn>1618-0860</eissn><abstract>Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana . Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus , activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>25810222</pmid><doi>10.1007/s10265-015-0714-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0918-9440
ispartof Journal of plant research, 2015-05, Vol.128 (3), p.389-397
issn 0918-9440
1618-0860
language eng
recordid cdi_proquest_miscellaneous_1675878366
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biomedical and Life Sciences
Brassica napus - genetics
Brassica napus - physiology
Flowers & plants
Gene expression
Indoleacetic Acids - metabolism
JPR Symposium
Life Sciences
Molecular biology
Organ Specificity
Plant Biochemistry
Plant biology
Plant Ecology
Plant Growth Regulators - metabolism
Plant Leaves - genetics
Plant Leaves - physiology
Plant Physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - physiology
Plant Sciences
Plant Shoots - genetics
Plant Shoots - physiology
Plant Somatic Embryogenesis Techniques
Plant tissues
Plants, Genetically Modified
Regeneration
Tissue engineering
Transcription Factors - genetics
Transcription Factors - metabolism
title WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WIND1-based%20acquisition%20of%20regeneration%20competency%20in%20Arabidopsis%20and%20rapeseed&rft.jtitle=Journal%20of%20plant%20research&rft.au=Iwase,%20Akira&rft.date=2015-05-01&rft.volume=128&rft.issue=3&rft.spage=389&rft.epage=397&rft.pages=389-397&rft.issn=0918-9440&rft.eissn=1618-0860&rft_id=info:doi/10.1007/s10265-015-0714-y&rft_dat=%3Cproquest_cross%3E1675878366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675115421&rft_id=info:pmid/25810222&rfr_iscdi=true