Synapses, spines and kinases in mammalian learning and memory, and the impact of aging

Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience and biobehavioral reviews 2015-03, Vol.50, p.77-85
1. Verfasser: van der Zee, Eddy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 77
container_title Neuroscience and biobehavioral reviews
container_volume 50
creator van der Zee, Eddy A
description Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.
doi_str_mv 10.1016/j.neubiorev.2014.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1675871721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675871721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-9cebb3502a37c23fce4d3006d269000fc83fe0879ff1a1dad19611f746377dbe3</originalsourceid><addsrcrecordid>eNo9kMlOwzAQQC0EoqXwC-AjhyZ4SezkiCo2qRIHlqvlJOPiEjshTpD696QLPc1o5s2ih9ANJTElVNytYw9DYZsOfmNGaBITERPKTtCUZpJHMmXZKZqOjTySgicTdBHCmhDCCE_P0YQleZ4lJJuiz7eN122AMMehtR4C1r7C39brsYatx047p2urPa5Bd9761Y5w4JpuM9_l_Rdg61pd9rgxWK9G5hKdGV0HuDrEGfp4fHhfPEfL16eXxf0yKnme9lFeQlHwlDDNZcm4KSGpOCGiYiIfvzVlxg2QTObGUE0rXdFcUGpkIriUVQF8hm73e9uu-Rkg9MrZUEJdaw_NEBQVMs0klYyOqNyjZdeE0IFRbWed7jaKErWVqtbqKFVtpSoi1Ch1nLw-HBkKB9Vx7t8i_wONQXZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675871721</pqid></control><display><type>article</type><title>Synapses, spines and kinases in mammalian learning and memory, and the impact of aging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>van der Zee, Eddy A</creator><creatorcontrib>van der Zee, Eddy A</creatorcontrib><description>Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.</description><identifier>ISSN: 0149-7634</identifier><identifier>EISSN: 1873-7528</identifier><identifier>DOI: 10.1016/j.neubiorev.2014.06.012</identifier><identifier>PMID: 24998408</identifier><language>eng</language><publisher>United States</publisher><subject>Aging ; Animals ; Brain - enzymology ; Brain - physiology ; Dendritic Spines - enzymology ; Humans ; Learning - physiology ; Mammals ; Memory - physiology ; Neuronal Plasticity ; Phosphotransferases - physiology ; Synapses - enzymology</subject><ispartof>Neuroscience and biobehavioral reviews, 2015-03, Vol.50, p.77-85</ispartof><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-9cebb3502a37c23fce4d3006d269000fc83fe0879ff1a1dad19611f746377dbe3</citedby><cites>FETCH-LOGICAL-c395t-9cebb3502a37c23fce4d3006d269000fc83fe0879ff1a1dad19611f746377dbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24998408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Zee, Eddy A</creatorcontrib><title>Synapses, spines and kinases in mammalian learning and memory, and the impact of aging</title><title>Neuroscience and biobehavioral reviews</title><addtitle>Neurosci Biobehav Rev</addtitle><description>Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.</description><subject>Aging</subject><subject>Animals</subject><subject>Brain - enzymology</subject><subject>Brain - physiology</subject><subject>Dendritic Spines - enzymology</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Mammals</subject><subject>Memory - physiology</subject><subject>Neuronal Plasticity</subject><subject>Phosphotransferases - physiology</subject><subject>Synapses - enzymology</subject><issn>0149-7634</issn><issn>1873-7528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMlOwzAQQC0EoqXwC-AjhyZ4SezkiCo2qRIHlqvlJOPiEjshTpD696QLPc1o5s2ih9ANJTElVNytYw9DYZsOfmNGaBITERPKTtCUZpJHMmXZKZqOjTySgicTdBHCmhDCCE_P0YQleZ4lJJuiz7eN122AMMehtR4C1r7C39brsYatx047p2urPa5Bd9761Y5w4JpuM9_l_Rdg61pd9rgxWK9G5hKdGV0HuDrEGfp4fHhfPEfL16eXxf0yKnme9lFeQlHwlDDNZcm4KSGpOCGiYiIfvzVlxg2QTObGUE0rXdFcUGpkIriUVQF8hm73e9uu-Rkg9MrZUEJdaw_NEBQVMs0klYyOqNyjZdeE0IFRbWed7jaKErWVqtbqKFVtpSoi1Ch1nLw-HBkKB9Vx7t8i_wONQXZg</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>van der Zee, Eddy A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>Synapses, spines and kinases in mammalian learning and memory, and the impact of aging</title><author>van der Zee, Eddy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-9cebb3502a37c23fce4d3006d269000fc83fe0879ff1a1dad19611f746377dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Brain - enzymology</topic><topic>Brain - physiology</topic><topic>Dendritic Spines - enzymology</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Mammals</topic><topic>Memory - physiology</topic><topic>Neuronal Plasticity</topic><topic>Phosphotransferases - physiology</topic><topic>Synapses - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Zee, Eddy A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience and biobehavioral reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Zee, Eddy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapses, spines and kinases in mammalian learning and memory, and the impact of aging</atitle><jtitle>Neuroscience and biobehavioral reviews</jtitle><addtitle>Neurosci Biobehav Rev</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>50</volume><spage>77</spage><epage>85</epage><pages>77-85</pages><issn>0149-7634</issn><eissn>1873-7528</eissn><abstract>Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.</abstract><cop>United States</cop><pmid>24998408</pmid><doi>10.1016/j.neubiorev.2014.06.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-7634
ispartof Neuroscience and biobehavioral reviews, 2015-03, Vol.50, p.77-85
issn 0149-7634
1873-7528
language eng
recordid cdi_proquest_miscellaneous_1675871721
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aging
Animals
Brain - enzymology
Brain - physiology
Dendritic Spines - enzymology
Humans
Learning - physiology
Mammals
Memory - physiology
Neuronal Plasticity
Phosphotransferases - physiology
Synapses - enzymology
title Synapses, spines and kinases in mammalian learning and memory, and the impact of aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapses,%20spines%20and%20kinases%20in%20mammalian%20learning%20and%20memory,%20and%20the%20impact%20of%20aging&rft.jtitle=Neuroscience%20and%20biobehavioral%20reviews&rft.au=van%20der%20Zee,%20Eddy%20A&rft.date=2015-03-01&rft.volume=50&rft.spage=77&rft.epage=85&rft.pages=77-85&rft.issn=0149-7634&rft.eissn=1873-7528&rft_id=info:doi/10.1016/j.neubiorev.2014.06.012&rft_dat=%3Cproquest_cross%3E1675871721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675871721&rft_id=info:pmid/24998408&rfr_iscdi=true