Versatile Organic Transistors by Solution Processing

A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2015-04, Vol.16 (6), p.1118-1132
Hauptverfasser: Ward, Jeremy W., Lamport, Zachary A., Jurchescu, Oana D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1132
container_issue 6
container_start_page 1118
container_title Chemphyschem
container_volume 16
creator Ward, Jeremy W.
Lamport, Zachary A.
Jurchescu, Oana D.
description A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed. The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.
doi_str_mv 10.1002/cphc.201402757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1674958680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3659147371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk6vHqXgxUtnfjbpUYtuynADp8IuoU3T2dm1M2nR_fdmdg7x4ikf5Hnf7-MB4BTBPoIQX6rVq-pjiCjEnPE90EWUhD4PKNrfzhQT1gFH1i4ghAJydAg6mDkYI9gF9FkbG9d5ob2xmcdlrrypiUub27oy1kvW3mNVNHVeld7EVEpbm5fzY3CQxYXVJ9u3B55ub6bR0B-NB3fR1chXTFDuZ4miELmNIct4kmpGeBgyiFBGQuH-KFEJSRKtKMNYcBSnCaRhmmGhqNCBIj1w0fauTPXeaFvLZW6VLoq41FVjJQo4DZkIBHTo-R90UTWmdNd9U4hjyjZUv6WUqaw1OpMrky9js5YIyo1PufEpdz5d4Gxb2yRLne7wH4EOCFvgwylc_1Mno8kw-l3ut1knW3_usrF5kwEnnMmXh4EUM3Y9I_cjCckXBLOPIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674172450</pqid></control><display><type>article</type><title>Versatile Organic Transistors by Solution Processing</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</creator><creatorcontrib>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</creatorcontrib><description>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed. The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201402757</identifier><identifier>PMID: 25757210</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>monolayers ; nanotechnology ; self-assembly ; semiconductors ; thin films</subject><ispartof>Chemphyschem, 2015-04, Vol.16 (6), p.1118-1132</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</citedby><cites>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201402757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201402757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25757210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Jeremy W.</creatorcontrib><creatorcontrib>Lamport, Zachary A.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><title>Versatile Organic Transistors by Solution Processing</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed. The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</description><subject>monolayers</subject><subject>nanotechnology</subject><subject>self-assembly</subject><subject>semiconductors</subject><subject>thin films</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMobk6vHqXgxUtnfjbpUYtuynADp8IuoU3T2dm1M2nR_fdmdg7x4ikf5Hnf7-MB4BTBPoIQX6rVq-pjiCjEnPE90EWUhD4PKNrfzhQT1gFH1i4ghAJydAg6mDkYI9gF9FkbG9d5ob2xmcdlrrypiUub27oy1kvW3mNVNHVeld7EVEpbm5fzY3CQxYXVJ9u3B55ub6bR0B-NB3fR1chXTFDuZ4miELmNIct4kmpGeBgyiFBGQuH-KFEJSRKtKMNYcBSnCaRhmmGhqNCBIj1w0fauTPXeaFvLZW6VLoq41FVjJQo4DZkIBHTo-R90UTWmdNd9U4hjyjZUv6WUqaw1OpMrky9js5YIyo1PufEpdz5d4Gxb2yRLne7wH4EOCFvgwylc_1Mno8kw-l3ut1knW3_usrF5kwEnnMmXh4EUM3Y9I_cjCckXBLOPIg</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Ward, Jeremy W.</creator><creator>Lamport, Zachary A.</creator><creator>Jurchescu, Oana D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20150427</creationdate><title>Versatile Organic Transistors by Solution Processing</title><author>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>monolayers</topic><topic>nanotechnology</topic><topic>self-assembly</topic><topic>semiconductors</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Jeremy W.</creatorcontrib><creatorcontrib>Lamport, Zachary A.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Jeremy W.</au><au>Lamport, Zachary A.</au><au>Jurchescu, Oana D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Organic Transistors by Solution Processing</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>1118</spage><epage>1132</epage><pages>1118-1132</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed. The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25757210</pmid><doi>10.1002/cphc.201402757</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2015-04, Vol.16 (6), p.1118-1132
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_1674958680
source Wiley Online Library - AutoHoldings Journals
subjects monolayers
nanotechnology
self-assembly
semiconductors
thin films
title Versatile Organic Transistors by Solution Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Organic%20Transistors%20by%20Solution%20Processing&rft.jtitle=Chemphyschem&rft.au=Ward,%20Jeremy%20W.&rft.date=2015-04-27&rft.volume=16&rft.issue=6&rft.spage=1118&rft.epage=1132&rft.pages=1118-1132&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201402757&rft_dat=%3Cproquest_cross%3E3659147371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674172450&rft_id=info:pmid/25757210&rfr_iscdi=true