Versatile Organic Transistors by Solution Processing
A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benef...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2015-04, Vol.16 (6), p.1118-1132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1132 |
---|---|
container_issue | 6 |
container_start_page | 1118 |
container_title | Chemphyschem |
container_volume | 16 |
creator | Ward, Jeremy W. Lamport, Zachary A. Jurchescu, Oana D. |
description | A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed.
The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics. |
doi_str_mv | 10.1002/cphc.201402757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1674958680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3659147371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk6vHqXgxUtnfjbpUYtuynADp8IuoU3T2dm1M2nR_fdmdg7x4ikf5Hnf7-MB4BTBPoIQX6rVq-pjiCjEnPE90EWUhD4PKNrfzhQT1gFH1i4ghAJydAg6mDkYI9gF9FkbG9d5ob2xmcdlrrypiUub27oy1kvW3mNVNHVeld7EVEpbm5fzY3CQxYXVJ9u3B55ub6bR0B-NB3fR1chXTFDuZ4miELmNIct4kmpGeBgyiFBGQuH-KFEJSRKtKMNYcBSnCaRhmmGhqNCBIj1w0fauTPXeaFvLZW6VLoq41FVjJQo4DZkIBHTo-R90UTWmdNd9U4hjyjZUv6WUqaw1OpMrky9js5YIyo1PufEpdz5d4Gxb2yRLne7wH4EOCFvgwylc_1Mno8kw-l3ut1knW3_usrF5kwEnnMmXh4EUM3Y9I_cjCckXBLOPIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674172450</pqid></control><display><type>article</type><title>Versatile Organic Transistors by Solution Processing</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</creator><creatorcontrib>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</creatorcontrib><description>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed.
The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201402757</identifier><identifier>PMID: 25757210</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>monolayers ; nanotechnology ; self-assembly ; semiconductors ; thin films</subject><ispartof>Chemphyschem, 2015-04, Vol.16 (6), p.1118-1132</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</citedby><cites>FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201402757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201402757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25757210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Jeremy W.</creatorcontrib><creatorcontrib>Lamport, Zachary A.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><title>Versatile Organic Transistors by Solution Processing</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed.
The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</description><subject>monolayers</subject><subject>nanotechnology</subject><subject>self-assembly</subject><subject>semiconductors</subject><subject>thin films</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMobk6vHqXgxUtnfjbpUYtuynADp8IuoU3T2dm1M2nR_fdmdg7x4ikf5Hnf7-MB4BTBPoIQX6rVq-pjiCjEnPE90EWUhD4PKNrfzhQT1gFH1i4ghAJydAg6mDkYI9gF9FkbG9d5ob2xmcdlrrypiUub27oy1kvW3mNVNHVeld7EVEpbm5fzY3CQxYXVJ9u3B55ub6bR0B-NB3fR1chXTFDuZ4miELmNIct4kmpGeBgyiFBGQuH-KFEJSRKtKMNYcBSnCaRhmmGhqNCBIj1w0fauTPXeaFvLZW6VLoq41FVjJQo4DZkIBHTo-R90UTWmdNd9U4hjyjZUv6WUqaw1OpMrky9js5YIyo1PufEpdz5d4Gxb2yRLne7wH4EOCFvgwylc_1Mno8kw-l3ut1knW3_usrF5kwEnnMmXh4EUM3Y9I_cjCckXBLOPIg</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Ward, Jeremy W.</creator><creator>Lamport, Zachary A.</creator><creator>Jurchescu, Oana D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20150427</creationdate><title>Versatile Organic Transistors by Solution Processing</title><author>Ward, Jeremy W. ; Lamport, Zachary A. ; Jurchescu, Oana D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5847-fbc40107195f7bde537995011f398bc443cb3bbec4522871adb049df28c48e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>monolayers</topic><topic>nanotechnology</topic><topic>self-assembly</topic><topic>semiconductors</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Jeremy W.</creatorcontrib><creatorcontrib>Lamport, Zachary A.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Jeremy W.</au><au>Lamport, Zachary A.</au><au>Jurchescu, Oana D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Organic Transistors by Solution Processing</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>1118</spage><epage>1132</epage><pages>1118-1132</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>A selection of the latest developments in organic electronic materials and organic field‐effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution‐deposited organic small‐molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed.
The organic age: The current state of research in the field of organic electronics is reviewed. Improvements in materials and deposition techniques are discussed, paying special attention to the tremendous versatility offered by organic materials, as illustrated in the figure. These developments confirm the large‐area compatibility of organics.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25757210</pmid><doi>10.1002/cphc.201402757</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2015-04, Vol.16 (6), p.1118-1132 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_1674958680 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | monolayers nanotechnology self-assembly semiconductors thin films |
title | Versatile Organic Transistors by Solution Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Organic%20Transistors%20by%20Solution%20Processing&rft.jtitle=Chemphyschem&rft.au=Ward,%20Jeremy%20W.&rft.date=2015-04-27&rft.volume=16&rft.issue=6&rft.spage=1118&rft.epage=1132&rft.pages=1118-1132&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201402757&rft_dat=%3Cproquest_cross%3E3659147371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674172450&rft_id=info:pmid/25757210&rfr_iscdi=true |