Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?

Mg­(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg­(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg­(BH4)2. The differential scanning calorimetry profile of the reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2015-04, Vol.54 (8), p.4120-4125
Hauptverfasser: Chong, Marina, Matsuo, Motoaki, Orimo, Shin-ichi, Autrey, Tom, Jensen, Craig M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4125
container_issue 8
container_start_page 4120
container_title Inorganic chemistry
container_volume 54
creator Chong, Marina
Matsuo, Motoaki
Orimo, Shin-ichi
Autrey, Tom
Jensen, Craig M
description Mg­(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg­(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg­(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg­(B3H8)2 to Mg­(BH4)2. Heating Mg­(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg­(BH4)2. Hydrogenation of a mixture of Mg­(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg­(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg­(B3H8)2, derived from the low-temperature dehydrogenation of Mg­(BH4)2, also produces Mg­(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg­(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the “regeneration” efficiency.
doi_str_mv 10.1021/acs.inorgchem.5b00373
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1674687627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1674687627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a234t-44afb88629da68a7d7119552ac5fa1848dc04ae8c9f323ae9a78b02bf5654a703</originalsourceid><addsrcrecordid>eNpNkUtLw0AUhQdRbH38BCVLXaTOOxM3YkWNoChWwd1wk9zESJrRTFrpvze1tbi6l8PH4XAOIUeMjhjl7AwyP6oa15bZO05HKqVURGKLDJniNFSMvm2TIaX9z7SOB2TP-w9KaSyk3iUDrgxTkqkhmU-wxqyr5hg84xxbX6U1Bskib12JDXSVawJXBA_lyVgk5pSfPZQJDzr3qyTylJ8HT9C9f8NiKf6zGLsWGgzH4DHf-AWTrpdLvDggOwXUHg_Xd5-83ly_XCXh_ePt3dXlfQhcyC6UEorUGM3jHLSBKI8Yi5XikKkCmJEmz6gENFlcCC4AY4hMSnlaKK0kRFTsk5OV72frvmboOzutfIZ13WdzM2-ZjqQ2keZRjx6v0Vk6xdx-ttUU2oX966oH2Aroq7cfbtY2fXLLqF3uYZfiZg-73kP8AExyfaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674687627</pqid></control><display><type>article</type><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><source>American Chemical Society (ACS) Journals</source><creator>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</creator><creatorcontrib>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</creatorcontrib><description>Mg­(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg­(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg­(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg­(B3H8)2 to Mg­(BH4)2. Heating Mg­(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg­(BH4)2. Hydrogenation of a mixture of Mg­(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg­(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg­(B3H8)2, derived from the low-temperature dehydrogenation of Mg­(BH4)2, also produces Mg­(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg­(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH &gt; NaH &gt; MgH2, the lower is the “regeneration” efficiency.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.5b00373</identifier><identifier>PMID: 25815415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2015-04, Vol.54 (8), p.4120-4125</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.5b00373$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.5b00373$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25815415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Marina</creatorcontrib><creatorcontrib>Matsuo, Motoaki</creatorcontrib><creatorcontrib>Orimo, Shin-ichi</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Jensen, Craig M</creatorcontrib><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Mg­(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg­(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg­(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg­(B3H8)2 to Mg­(BH4)2. Heating Mg­(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg­(BH4)2. Hydrogenation of a mixture of Mg­(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg­(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg­(B3H8)2, derived from the low-temperature dehydrogenation of Mg­(BH4)2, also produces Mg­(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg­(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH &gt; NaH &gt; MgH2, the lower is the “regeneration” efficiency.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkUtLw0AUhQdRbH38BCVLXaTOOxM3YkWNoChWwd1wk9zESJrRTFrpvze1tbi6l8PH4XAOIUeMjhjl7AwyP6oa15bZO05HKqVURGKLDJniNFSMvm2TIaX9z7SOB2TP-w9KaSyk3iUDrgxTkqkhmU-wxqyr5hg84xxbX6U1Bskib12JDXSVawJXBA_lyVgk5pSfPZQJDzr3qyTylJ8HT9C9f8NiKf6zGLsWGgzH4DHf-AWTrpdLvDggOwXUHg_Xd5-83ly_XCXh_ePt3dXlfQhcyC6UEorUGM3jHLSBKI8Yi5XikKkCmJEmz6gENFlcCC4AY4hMSnlaKK0kRFTsk5OV72frvmboOzutfIZ13WdzM2-ZjqQ2keZRjx6v0Vk6xdx-ttUU2oX966oH2Aroq7cfbtY2fXLLqF3uYZfiZg-73kP8AExyfaM</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Chong, Marina</creator><creator>Matsuo, Motoaki</creator><creator>Orimo, Shin-ichi</creator><creator>Autrey, Tom</creator><creator>Jensen, Craig M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150420</creationdate><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><author>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a234t-44afb88629da68a7d7119552ac5fa1848dc04ae8c9f323ae9a78b02bf5654a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Marina</creatorcontrib><creatorcontrib>Matsuo, Motoaki</creatorcontrib><creatorcontrib>Orimo, Shin-ichi</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Jensen, Craig M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong, Marina</au><au>Matsuo, Motoaki</au><au>Orimo, Shin-ichi</au><au>Autrey, Tom</au><au>Jensen, Craig M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2015-04-20</date><risdate>2015</risdate><volume>54</volume><issue>8</issue><spage>4120</spage><epage>4125</epage><pages>4120-4125</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Mg­(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg­(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg­(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg­(B3H8)2 to Mg­(BH4)2. Heating Mg­(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg­(BH4)2. Hydrogenation of a mixture of Mg­(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg­(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg­(B3H8)2, derived from the low-temperature dehydrogenation of Mg­(BH4)2, also produces Mg­(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg­(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH &gt; NaH &gt; MgH2, the lower is the “regeneration” efficiency.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25815415</pmid><doi>10.1021/acs.inorgchem.5b00373</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2015-04, Vol.54 (8), p.4120-4125
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1674687627
source American Chemical Society (ACS) Journals
title Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Reversible%20Hydrogenation%20of%20Mg(B3H8)2/MgH2%20to%20Mg(BH4)2:%20Pathway%20to%20Reversible%20Borane-Based%20Hydrogen%20Storage?&rft.jtitle=Inorganic%20chemistry&rft.au=Chong,%20Marina&rft.date=2015-04-20&rft.volume=54&rft.issue=8&rft.spage=4120&rft.epage=4125&rft.pages=4120-4125&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.5b00373&rft_dat=%3Cproquest_pubme%3E1674687627%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674687627&rft_id=info:pmid/25815415&rfr_iscdi=true