Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?
Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reacti...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-04, Vol.54 (8), p.4120-4125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4125 |
---|---|
container_issue | 8 |
container_start_page | 4120 |
container_title | Inorganic chemistry |
container_volume | 54 |
creator | Chong, Marina Matsuo, Motoaki Orimo, Shin-ichi Autrey, Tom Jensen, Craig M |
description | Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg(B3H8)2 to Mg(BH4)2. Heating Mg(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg(BH4)2. Hydrogenation of a mixture of Mg(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg(B3H8)2, derived from the low-temperature dehydrogenation of Mg(BH4)2, also produces Mg(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the “regeneration” efficiency. |
doi_str_mv | 10.1021/acs.inorgchem.5b00373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1674687627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1674687627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a234t-44afb88629da68a7d7119552ac5fa1848dc04ae8c9f323ae9a78b02bf5654a703</originalsourceid><addsrcrecordid>eNpNkUtLw0AUhQdRbH38BCVLXaTOOxM3YkWNoChWwd1wk9zESJrRTFrpvze1tbi6l8PH4XAOIUeMjhjl7AwyP6oa15bZO05HKqVURGKLDJniNFSMvm2TIaX9z7SOB2TP-w9KaSyk3iUDrgxTkqkhmU-wxqyr5hg84xxbX6U1Bskib12JDXSVawJXBA_lyVgk5pSfPZQJDzr3qyTylJ8HT9C9f8NiKf6zGLsWGgzH4DHf-AWTrpdLvDggOwXUHg_Xd5-83ly_XCXh_ePt3dXlfQhcyC6UEorUGM3jHLSBKI8Yi5XikKkCmJEmz6gENFlcCC4AY4hMSnlaKK0kRFTsk5OV72frvmboOzutfIZ13WdzM2-ZjqQ2keZRjx6v0Vk6xdx-ttUU2oX966oH2Aroq7cfbtY2fXLLqF3uYZfiZg-73kP8AExyfaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674687627</pqid></control><display><type>article</type><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><source>American Chemical Society (ACS) Journals</source><creator>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</creator><creatorcontrib>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</creatorcontrib><description>Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg(B3H8)2 to Mg(BH4)2. Heating Mg(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg(BH4)2. Hydrogenation of a mixture of Mg(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg(B3H8)2, derived from the low-temperature dehydrogenation of Mg(BH4)2, also produces Mg(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the “regeneration” efficiency.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.5b00373</identifier><identifier>PMID: 25815415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2015-04, Vol.54 (8), p.4120-4125</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.5b00373$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.5b00373$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25815415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Marina</creatorcontrib><creatorcontrib>Matsuo, Motoaki</creatorcontrib><creatorcontrib>Orimo, Shin-ichi</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Jensen, Craig M</creatorcontrib><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg(B3H8)2 to Mg(BH4)2. Heating Mg(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg(BH4)2. Hydrogenation of a mixture of Mg(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg(B3H8)2, derived from the low-temperature dehydrogenation of Mg(BH4)2, also produces Mg(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the “regeneration” efficiency.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkUtLw0AUhQdRbH38BCVLXaTOOxM3YkWNoChWwd1wk9zESJrRTFrpvze1tbi6l8PH4XAOIUeMjhjl7AwyP6oa15bZO05HKqVURGKLDJniNFSMvm2TIaX9z7SOB2TP-w9KaSyk3iUDrgxTkqkhmU-wxqyr5hg84xxbX6U1Bskib12JDXSVawJXBA_lyVgk5pSfPZQJDzr3qyTylJ8HT9C9f8NiKf6zGLsWGgzH4DHf-AWTrpdLvDggOwXUHg_Xd5-83ly_XCXh_ePt3dXlfQhcyC6UEorUGM3jHLSBKI8Yi5XikKkCmJEmz6gENFlcCC4AY4hMSnlaKK0kRFTsk5OV72frvmboOzutfIZ13WdzM2-ZjqQ2keZRjx6v0Vk6xdx-ttUU2oX966oH2Aroq7cfbtY2fXLLqF3uYZfiZg-73kP8AExyfaM</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Chong, Marina</creator><creator>Matsuo, Motoaki</creator><creator>Orimo, Shin-ichi</creator><creator>Autrey, Tom</creator><creator>Jensen, Craig M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150420</creationdate><title>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</title><author>Chong, Marina ; Matsuo, Motoaki ; Orimo, Shin-ichi ; Autrey, Tom ; Jensen, Craig M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a234t-44afb88629da68a7d7119552ac5fa1848dc04ae8c9f323ae9a78b02bf5654a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Marina</creatorcontrib><creatorcontrib>Matsuo, Motoaki</creatorcontrib><creatorcontrib>Orimo, Shin-ichi</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Jensen, Craig M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong, Marina</au><au>Matsuo, Motoaki</au><au>Orimo, Shin-ichi</au><au>Autrey, Tom</au><au>Jensen, Craig M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage?</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2015-04-20</date><risdate>2015</risdate><volume>54</volume><issue>8</issue><spage>4120</spage><epage>4125</epage><pages>4120-4125</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg(B3H8)2 to Mg(BH4)2. Heating Mg(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg(BH4)2. Hydrogenation of a mixture of Mg(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12]2– in addition to [BH4]−, while a 1:4 molar ratio of Mg(B3H8)2·2THF and NaH yields [BH4]− and a new borane, likely [B2H7]−. Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4]−. The solvent-free triborane Mg(B3H8)2, derived from the low-temperature dehydrogenation of Mg(BH4)2, also produces Mg(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the “regeneration” efficiency.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25815415</pmid><doi>10.1021/acs.inorgchem.5b00373</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2015-04, Vol.54 (8), p.4120-4125 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_1674687627 |
source | American Chemical Society (ACS) Journals |
title | Selective Reversible Hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: Pathway to Reversible Borane-Based Hydrogen Storage? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Reversible%20Hydrogenation%20of%20Mg(B3H8)2/MgH2%20to%20Mg(BH4)2:%20Pathway%20to%20Reversible%20Borane-Based%20Hydrogen%20Storage?&rft.jtitle=Inorganic%20chemistry&rft.au=Chong,%20Marina&rft.date=2015-04-20&rft.volume=54&rft.issue=8&rft.spage=4120&rft.epage=4125&rft.pages=4120-4125&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.5b00373&rft_dat=%3Cproquest_pubme%3E1674687627%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674687627&rft_id=info:pmid/25815415&rfr_iscdi=true |