Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique

Purpose Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD‐on technique and the Press‐on techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of prosthodontics 2015-04, Vol.24 (3), p.188-193
Hauptverfasser: Renda, James J., Harding, Aaron B., Bailey, Clifton W., Guillory, Villa L., Vandewalle, Kraig S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 3
container_start_page 188
container_title Journal of prosthodontics
container_volume 24
creator Renda, James J.
Harding, Aaron B.
Bailey, Clifton W.
Guillory, Villa L.
Vandewalle, Kraig S.
description Purpose Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD‐on technique and the Press‐on technique. Materials and Methods Group A was prepared by veneering sintered zirconia blocks (e.max® ZirCAD) with lithium disilicate blocks (e.max® CAD) using the CAD‐on technique according to manufacturer's instructions. Group B was prepared by taking sintered e.max® ZirCAD blocks and veneering them with fluorapatite glass‐ceramic (e.max® ZirPress) using the Press‐on technique according to manufacturer's instructions. Each block was loaded in a dynamic cyclic loading machine. The blocks were then sectioned into 1 × 1 mm2 beams (n = 43) using a precision saw, thermocycled, and loaded in tension until failure on a universal testing machine. A mean and standard deviation were determined per group. Data were analyzed using an unpaired t‐test (α = 0.05). Results The mean microtensile bond strengths were 44.0 ± 13.8 MPa for the CAD‐on technique and 14.9 ± 8.8 MPa for the Press‐on technique. Significant differences were found between the two groups (p = 2.7E−19). Conclusions The CAD‐on technique (lithium disilicate/zirconia) resulted in greater microtensile bond strength than the Press‐on technique (fluorapatite glass‐ceramic/zirconia).
doi_str_mv 10.1111/jopr.12246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1674204365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3654914601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4656-8bdba8d424127f981e4db0c8d731813b85bc2e364fd2c0dbe63cfd05374da01d3</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhq0K1C964QcgS1xQpS0ef-x6jyWlLShQSlMacbF2bS9xSNap7VXbf49D2h44MBePNM-8Hj0IvQZyBLnez_0qHAGlvNxCuyAYLSSvpy9yT0Rd1BymO2gvxjkhAELCNtqhQgpS83oX_fjidPDJ9tEtLP7ge4OvUrD9rzTDvsNjl2ZuWOITl-dON8ni5PFPF7TvXYPv8hinmcWj45PC93hi9ax3t4N9hV52zSLag8d3H12ffpyMzovxxdmn0fG40LwUZSFb0zbScMqBVl0twXLTEi1NxUACa6VoNbWs5J2hmpjWlkx3hghWcdMQMGwfvdvkroLP38akli5qu1g0vfVDVFBWnBLOSpHRt_-gcz-EPl-3phhQJqjM1OGGylZiDLZTq-CWTXhQQNTatlrbVn9tZ_jNY-TQLq15Rp_0ZgA2wF22-_CfKPX54tv3p9Bis-NisvfPO034rfKZlVA3X8_UzeXVZCoup0qwPwWUmPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673123528</pqid></control><display><type>article</type><title>Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Renda, James J. ; Harding, Aaron B. ; Bailey, Clifton W. ; Guillory, Villa L. ; Vandewalle, Kraig S.</creator><creatorcontrib>Renda, James J. ; Harding, Aaron B. ; Bailey, Clifton W. ; Guillory, Villa L. ; Vandewalle, Kraig S.</creatorcontrib><description>Purpose Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD‐on technique and the Press‐on technique. Materials and Methods Group A was prepared by veneering sintered zirconia blocks (e.max® ZirCAD) with lithium disilicate blocks (e.max® CAD) using the CAD‐on technique according to manufacturer's instructions. Group B was prepared by taking sintered e.max® ZirCAD blocks and veneering them with fluorapatite glass‐ceramic (e.max® ZirPress) using the Press‐on technique according to manufacturer's instructions. Each block was loaded in a dynamic cyclic loading machine. The blocks were then sectioned into 1 × 1 mm2 beams (n = 43) using a precision saw, thermocycled, and loaded in tension until failure on a universal testing machine. A mean and standard deviation were determined per group. Data were analyzed using an unpaired t‐test (α = 0.05). Results The mean microtensile bond strengths were 44.0 ± 13.8 MPa for the CAD‐on technique and 14.9 ± 8.8 MPa for the Press‐on technique. Significant differences were found between the two groups (p = 2.7E−19). Conclusions The CAD‐on technique (lithium disilicate/zirconia) resulted in greater microtensile bond strength than the Press‐on technique (fluorapatite glass‐ceramic/zirconia).</description><identifier>ISSN: 1059-941X</identifier><identifier>EISSN: 1532-849X</identifier><identifier>DOI: 10.1111/jopr.12246</identifier><identifier>PMID: 25850949</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>All-ceramic ; Apatites ; CAD-on ; Ceramics - chemistry ; Dental Porcelain - chemistry ; Dental Prosthesis Design - methods ; Dental Stress Analysis ; Dental Veneers ; Dentistry ; Materials Testing - methods ; microtensile bond strength ; Press-on ; Prosthodontics - methods ; Tensile Strength ; zirconia framework ; Zirconium - chemistry</subject><ispartof>Journal of prosthodontics, 2015-04, Vol.24 (3), p.188-193</ispartof><rights>This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2015 American College of Prosthodontists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4656-8bdba8d424127f981e4db0c8d731813b85bc2e364fd2c0dbe63cfd05374da01d3</citedby><cites>FETCH-LOGICAL-c4656-8bdba8d424127f981e4db0c8d731813b85bc2e364fd2c0dbe63cfd05374da01d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjopr.12246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjopr.12246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25850949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renda, James J.</creatorcontrib><creatorcontrib>Harding, Aaron B.</creatorcontrib><creatorcontrib>Bailey, Clifton W.</creatorcontrib><creatorcontrib>Guillory, Villa L.</creatorcontrib><creatorcontrib>Vandewalle, Kraig S.</creatorcontrib><title>Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique</title><title>Journal of prosthodontics</title><addtitle>Journal of Prosthodontics</addtitle><description>Purpose Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD‐on technique and the Press‐on technique. Materials and Methods Group A was prepared by veneering sintered zirconia blocks (e.max® ZirCAD) with lithium disilicate blocks (e.max® CAD) using the CAD‐on technique according to manufacturer's instructions. Group B was prepared by taking sintered e.max® ZirCAD blocks and veneering them with fluorapatite glass‐ceramic (e.max® ZirPress) using the Press‐on technique according to manufacturer's instructions. Each block was loaded in a dynamic cyclic loading machine. The blocks were then sectioned into 1 × 1 mm2 beams (n = 43) using a precision saw, thermocycled, and loaded in tension until failure on a universal testing machine. A mean and standard deviation were determined per group. Data were analyzed using an unpaired t‐test (α = 0.05). Results The mean microtensile bond strengths were 44.0 ± 13.8 MPa for the CAD‐on technique and 14.9 ± 8.8 MPa for the Press‐on technique. Significant differences were found between the two groups (p = 2.7E−19). Conclusions The CAD‐on technique (lithium disilicate/zirconia) resulted in greater microtensile bond strength than the Press‐on technique (fluorapatite glass‐ceramic/zirconia).</description><subject>All-ceramic</subject><subject>Apatites</subject><subject>CAD-on</subject><subject>Ceramics - chemistry</subject><subject>Dental Porcelain - chemistry</subject><subject>Dental Prosthesis Design - methods</subject><subject>Dental Stress Analysis</subject><subject>Dental Veneers</subject><subject>Dentistry</subject><subject>Materials Testing - methods</subject><subject>microtensile bond strength</subject><subject>Press-on</subject><subject>Prosthodontics - methods</subject><subject>Tensile Strength</subject><subject>zirconia framework</subject><subject>Zirconium - chemistry</subject><issn>1059-941X</issn><issn>1532-849X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhq0K1C964QcgS1xQpS0ef-x6jyWlLShQSlMacbF2bS9xSNap7VXbf49D2h44MBePNM-8Hj0IvQZyBLnez_0qHAGlvNxCuyAYLSSvpy9yT0Rd1BymO2gvxjkhAELCNtqhQgpS83oX_fjidPDJ9tEtLP7ge4OvUrD9rzTDvsNjl2ZuWOITl-dON8ni5PFPF7TvXYPv8hinmcWj45PC93hi9ax3t4N9hV52zSLag8d3H12ffpyMzovxxdmn0fG40LwUZSFb0zbScMqBVl0twXLTEi1NxUACa6VoNbWs5J2hmpjWlkx3hghWcdMQMGwfvdvkroLP38akli5qu1g0vfVDVFBWnBLOSpHRt_-gcz-EPl-3phhQJqjM1OGGylZiDLZTq-CWTXhQQNTatlrbVn9tZ_jNY-TQLq15Rp_0ZgA2wF22-_CfKPX54tv3p9Bis-NisvfPO034rfKZlVA3X8_UzeXVZCoup0qwPwWUmPU</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Renda, James J.</creator><creator>Harding, Aaron B.</creator><creator>Bailey, Clifton W.</creator><creator>Guillory, Villa L.</creator><creator>Vandewalle, Kraig S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201504</creationdate><title>Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique</title><author>Renda, James J. ; Harding, Aaron B. ; Bailey, Clifton W. ; Guillory, Villa L. ; Vandewalle, Kraig S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4656-8bdba8d424127f981e4db0c8d731813b85bc2e364fd2c0dbe63cfd05374da01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>All-ceramic</topic><topic>Apatites</topic><topic>CAD-on</topic><topic>Ceramics - chemistry</topic><topic>Dental Porcelain - chemistry</topic><topic>Dental Prosthesis Design - methods</topic><topic>Dental Stress Analysis</topic><topic>Dental Veneers</topic><topic>Dentistry</topic><topic>Materials Testing - methods</topic><topic>microtensile bond strength</topic><topic>Press-on</topic><topic>Prosthodontics - methods</topic><topic>Tensile Strength</topic><topic>zirconia framework</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renda, James J.</creatorcontrib><creatorcontrib>Harding, Aaron B.</creatorcontrib><creatorcontrib>Bailey, Clifton W.</creatorcontrib><creatorcontrib>Guillory, Villa L.</creatorcontrib><creatorcontrib>Vandewalle, Kraig S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of prosthodontics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renda, James J.</au><au>Harding, Aaron B.</au><au>Bailey, Clifton W.</au><au>Guillory, Villa L.</au><au>Vandewalle, Kraig S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique</atitle><jtitle>Journal of prosthodontics</jtitle><addtitle>Journal of Prosthodontics</addtitle><date>2015-04</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>188</spage><epage>193</epage><pages>188-193</pages><issn>1059-941X</issn><eissn>1532-849X</eissn><abstract>Purpose Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD‐on technique and the Press‐on technique. Materials and Methods Group A was prepared by veneering sintered zirconia blocks (e.max® ZirCAD) with lithium disilicate blocks (e.max® CAD) using the CAD‐on technique according to manufacturer's instructions. Group B was prepared by taking sintered e.max® ZirCAD blocks and veneering them with fluorapatite glass‐ceramic (e.max® ZirPress) using the Press‐on technique according to manufacturer's instructions. Each block was loaded in a dynamic cyclic loading machine. The blocks were then sectioned into 1 × 1 mm2 beams (n = 43) using a precision saw, thermocycled, and loaded in tension until failure on a universal testing machine. A mean and standard deviation were determined per group. Data were analyzed using an unpaired t‐test (α = 0.05). Results The mean microtensile bond strengths were 44.0 ± 13.8 MPa for the CAD‐on technique and 14.9 ± 8.8 MPa for the Press‐on technique. Significant differences were found between the two groups (p = 2.7E−19). Conclusions The CAD‐on technique (lithium disilicate/zirconia) resulted in greater microtensile bond strength than the Press‐on technique (fluorapatite glass‐ceramic/zirconia).</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25850949</pmid><doi>10.1111/jopr.12246</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-941X
ispartof Journal of prosthodontics, 2015-04, Vol.24 (3), p.188-193
issn 1059-941X
1532-849X
language eng
recordid cdi_proquest_miscellaneous_1674204365
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects All-ceramic
Apatites
CAD-on
Ceramics - chemistry
Dental Porcelain - chemistry
Dental Prosthesis Design - methods
Dental Stress Analysis
Dental Veneers
Dentistry
Materials Testing - methods
microtensile bond strength
Press-on
Prosthodontics - methods
Tensile Strength
zirconia framework
Zirconium - chemistry
title Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtensile%20Bond%20Strength%20of%20Lithium%20Disilicate%20to%20Zirconia%20with%20the%20CAD-on%20Technique&rft.jtitle=Journal%20of%20prosthodontics&rft.au=Renda,%20James%20J.&rft.date=2015-04&rft.volume=24&rft.issue=3&rft.spage=188&rft.epage=193&rft.pages=188-193&rft.issn=1059-941X&rft.eissn=1532-849X&rft_id=info:doi/10.1111/jopr.12246&rft_dat=%3Cproquest_cross%3E3654914601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673123528&rft_id=info:pmid/25850949&rfr_iscdi=true