Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure

To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1990-12, Vol.87 (24), p.9688-9692
Hauptverfasser: Soreq, Hermona, Ben-Aziz, Revital, Prody, Catherine A., Seidman, Shlomo, Gnatt, Averell, Neville, Lewis, Lieman-Hurwitz, Judith, lev-Lehman, Efrat, Ginzberg, Dalia, Lapidot-Lifson, Yaron, Zakut, Haim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9692
container_issue 24
container_start_page 9688
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 87
creator Soreq, Hermona
Ben-Aziz, Revital
Prody, Catherine A.
Seidman, Shlomo
Gnatt, Averell
Neville, Lewis
Lieman-Hurwitz, Judith
lev-Lehman, Efrat
Ginzberg, Dalia
Lapidot-Lifson, Yaron
Zakut, Haim
description To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.
doi_str_mv 10.1073/pnas.87.24.9688
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16741289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2356478</jstor_id><sourcerecordid>2356478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIVErhzAWQhQQc0Ka21-sPiUsUQYtUhFTgbDmz3mQrx05tb0WP_Od4SWjgAidL837z3tieqnpK8Ixg0ZxuvUkzKWaUzRSX8l51TLAiNWcK36-OMaailoyyh9WjlK4wxqqV-Kg6opQ3nKjj6sen4CyMzkS0cMEPfoWM79Ai-JTjCHkIHoUe5bUttW6SL-1qKvYhovNxYzyag823DtbBDd6mbKNJtlA31riEDDpDb9GivhxgjeY5Wz-aPNl8-WU_Rvu4etAX0j7ZnyfVtw_vvy7O64vPZx8X84saOGtzTSixlAlV5rZCtEsJuOGSU4Al4YwxJYjomFJg2oYvhelF1-Om4xwUgQZYc1K92_lux-XGdmB9jsbpbRw2Jt7qYAb9t-KHtV6FG922tJGl_eWuPaQ86ARDtrCG4L2FrFtMBG6njNf7jBiux_IYejMksM4Zb8OYtMREcozJf0HCBSNUqgKe7kCIIaVo-7uBCdbTBuhpA7QUmjI9bUDpeP7nPe_4_ZcX_dVeNwmM66PxMKSDreKYUswL92bPTQG_5UOQ7kfnsv2eC_nin2QBnu2Aq5RDPEzUtJwJ2fwEtyPb4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16741289</pqid></control><display><type>article</type><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</creator><creatorcontrib>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</creatorcontrib><description>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.87.24.9688</identifier><identifier>PMID: 2263619</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; ACETYLCHOLINE ; acetylcholinesterase ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; AMINES ; AMINO ACID SEQUENCE ; Amino acids ; AMMONIUM COMPOUNDS ; ANIMALS ; AUTONOMIC NERVOUS SYSTEM AGENTS ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; Biological and medical sciences ; CARBOXYLESTERASES ; cDNA ; cholinesterase ; CLONING ; Cloning, Molecular ; Complementary DNA ; Cytosine ; DAYS LIVING RADIOISOTOPES ; DNA ; DNA HYBRIDIZATION ; DNA probes ; DNA SEQUENCING ; DNA-CLONING ; DRUGS ; ENZYMES ; ESTERASES ; ESTERS ; Female ; Fundamental and applied biological sciences. Psychology ; GENE AMPLIFICATION ; Gene expression ; Gene Library ; Genomics ; Guanine ; Humans ; HYBRIDIZATION ; HYDROLASES ; ISOTOPES ; LIGHT NUCLEI ; MAMMALS ; MAN ; MESSENGER-RNA ; Models, Molecular ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; MOLECULAR STRUCTURE ; NEUROREGULATORS ; NUCLEI ; Nucleic Acid Conformation ; NUCLEIC ACIDS ; Nucleotides ; ODD-ODD NUCLEI ; Oligonucleotide Probes ; OLIGONUCLEOTIDES ; Oocytes ; Oocytes - enzymology ; ORGANIC COMPOUNDS ; PARASYMPATHOMIMETICS ; PHOSPHORUS 32 ; PHOSPHORUS ISOTOPES ; PRIMATES ; Protein Biosynthesis ; QUATERNARY COMPOUNDS ; RADIOISOTOPES ; RECOMBINANT DNA ; restriction fragment length polymorphism ; Restriction Mapping ; RNA ; RNA, Messenger - genetics ; Sequence Homology, Nucleic Acid ; Sequencing ; STRUCTURAL CHEMICAL ANALYSIS ; Torpedo ; Transcriptional regulatory elements ; VERTEBRATES ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (24), p.9688-9692</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/87/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2356478$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2356478$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19602206$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2263619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5017054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soreq, Hermona</creatorcontrib><creatorcontrib>Ben-Aziz, Revital</creatorcontrib><creatorcontrib>Prody, Catherine A.</creatorcontrib><creatorcontrib>Seidman, Shlomo</creatorcontrib><creatorcontrib>Gnatt, Averell</creatorcontrib><creatorcontrib>Neville, Lewis</creatorcontrib><creatorcontrib>Lieman-Hurwitz, Judith</creatorcontrib><creatorcontrib>lev-Lehman, Efrat</creatorcontrib><creatorcontrib>Ginzberg, Dalia</creatorcontrib><creatorcontrib>Lapidot-Lifson, Yaron</creatorcontrib><creatorcontrib>Zakut, Haim</creatorcontrib><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>ACETYLCHOLINE</subject><subject>acetylcholinesterase</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>AMINES</subject><subject>AMINO ACID SEQUENCE</subject><subject>Amino acids</subject><subject>AMMONIUM COMPOUNDS</subject><subject>ANIMALS</subject><subject>AUTONOMIC NERVOUS SYSTEM AGENTS</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>Biological and medical sciences</subject><subject>CARBOXYLESTERASES</subject><subject>cDNA</subject><subject>cholinesterase</subject><subject>CLONING</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Cytosine</subject><subject>DAYS LIVING RADIOISOTOPES</subject><subject>DNA</subject><subject>DNA HYBRIDIZATION</subject><subject>DNA probes</subject><subject>DNA SEQUENCING</subject><subject>DNA-CLONING</subject><subject>DRUGS</subject><subject>ENZYMES</subject><subject>ESTERASES</subject><subject>ESTERS</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE AMPLIFICATION</subject><subject>Gene expression</subject><subject>Gene Library</subject><subject>Genomics</subject><subject>Guanine</subject><subject>Humans</subject><subject>HYBRIDIZATION</subject><subject>HYDROLASES</subject><subject>ISOTOPES</subject><subject>LIGHT NUCLEI</subject><subject>MAMMALS</subject><subject>MAN</subject><subject>MESSENGER-RNA</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>MOLECULAR STRUCTURE</subject><subject>NEUROREGULATORS</subject><subject>NUCLEI</subject><subject>Nucleic Acid Conformation</subject><subject>NUCLEIC ACIDS</subject><subject>Nucleotides</subject><subject>ODD-ODD NUCLEI</subject><subject>Oligonucleotide Probes</subject><subject>OLIGONUCLEOTIDES</subject><subject>Oocytes</subject><subject>Oocytes - enzymology</subject><subject>ORGANIC COMPOUNDS</subject><subject>PARASYMPATHOMIMETICS</subject><subject>PHOSPHORUS 32</subject><subject>PHOSPHORUS ISOTOPES</subject><subject>PRIMATES</subject><subject>Protein Biosynthesis</subject><subject>QUATERNARY COMPOUNDS</subject><subject>RADIOISOTOPES</subject><subject>RECOMBINANT DNA</subject><subject>restriction fragment length polymorphism</subject><subject>Restriction Mapping</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sequencing</subject><subject>STRUCTURAL CHEMICAL ANALYSIS</subject><subject>Torpedo</subject><subject>Transcriptional regulatory elements</subject><subject>VERTEBRATES</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1vEzEQxVcIVErhzAWQhQQc0Ka21-sPiUsUQYtUhFTgbDmz3mQrx05tb0WP_Od4SWjgAidL837z3tieqnpK8Ixg0ZxuvUkzKWaUzRSX8l51TLAiNWcK36-OMaailoyyh9WjlK4wxqqV-Kg6opQ3nKjj6sen4CyMzkS0cMEPfoWM79Ai-JTjCHkIHoUe5bUttW6SL-1qKvYhovNxYzyag823DtbBDd6mbKNJtlA31riEDDpDb9GivhxgjeY5Wz-aPNl8-WU_Rvu4etAX0j7ZnyfVtw_vvy7O64vPZx8X84saOGtzTSixlAlV5rZCtEsJuOGSU4Al4YwxJYjomFJg2oYvhelF1-Om4xwUgQZYc1K92_lux-XGdmB9jsbpbRw2Jt7qYAb9t-KHtV6FG922tJGl_eWuPaQ86ARDtrCG4L2FrFtMBG6njNf7jBiux_IYejMksM4Zb8OYtMREcozJf0HCBSNUqgKe7kCIIaVo-7uBCdbTBuhpA7QUmjI9bUDpeP7nPe_4_ZcX_dVeNwmM66PxMKSDreKYUswL92bPTQG_5UOQ7kfnsv2eC_nin2QBnu2Aq5RDPEzUtJwJ2fwEtyPb4g</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Soreq, Hermona</creator><creator>Ben-Aziz, Revital</creator><creator>Prody, Catherine A.</creator><creator>Seidman, Shlomo</creator><creator>Gnatt, Averell</creator><creator>Neville, Lewis</creator><creator>Lieman-Hurwitz, Judith</creator><creator>lev-Lehman, Efrat</creator><creator>Ginzberg, Dalia</creator><creator>Lapidot-Lifson, Yaron</creator><creator>Zakut, Haim</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T3</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19901201</creationdate><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><author>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>ACETYLCHOLINE</topic><topic>acetylcholinesterase</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>AMINES</topic><topic>AMINO ACID SEQUENCE</topic><topic>Amino acids</topic><topic>AMMONIUM COMPOUNDS</topic><topic>ANIMALS</topic><topic>AUTONOMIC NERVOUS SYSTEM AGENTS</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>Biological and medical sciences</topic><topic>CARBOXYLESTERASES</topic><topic>cDNA</topic><topic>cholinesterase</topic><topic>CLONING</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Cytosine</topic><topic>DAYS LIVING RADIOISOTOPES</topic><topic>DNA</topic><topic>DNA HYBRIDIZATION</topic><topic>DNA probes</topic><topic>DNA SEQUENCING</topic><topic>DNA-CLONING</topic><topic>DRUGS</topic><topic>ENZYMES</topic><topic>ESTERASES</topic><topic>ESTERS</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE AMPLIFICATION</topic><topic>Gene expression</topic><topic>Gene Library</topic><topic>Genomics</topic><topic>Guanine</topic><topic>Humans</topic><topic>HYBRIDIZATION</topic><topic>HYDROLASES</topic><topic>ISOTOPES</topic><topic>LIGHT NUCLEI</topic><topic>MAMMALS</topic><topic>MAN</topic><topic>MESSENGER-RNA</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>MOLECULAR STRUCTURE</topic><topic>NEUROREGULATORS</topic><topic>NUCLEI</topic><topic>Nucleic Acid Conformation</topic><topic>NUCLEIC ACIDS</topic><topic>Nucleotides</topic><topic>ODD-ODD NUCLEI</topic><topic>Oligonucleotide Probes</topic><topic>OLIGONUCLEOTIDES</topic><topic>Oocytes</topic><topic>Oocytes - enzymology</topic><topic>ORGANIC COMPOUNDS</topic><topic>PARASYMPATHOMIMETICS</topic><topic>PHOSPHORUS 32</topic><topic>PHOSPHORUS ISOTOPES</topic><topic>PRIMATES</topic><topic>Protein Biosynthesis</topic><topic>QUATERNARY COMPOUNDS</topic><topic>RADIOISOTOPES</topic><topic>RECOMBINANT DNA</topic><topic>restriction fragment length polymorphism</topic><topic>Restriction Mapping</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sequencing</topic><topic>STRUCTURAL CHEMICAL ANALYSIS</topic><topic>Torpedo</topic><topic>Transcriptional regulatory elements</topic><topic>VERTEBRATES</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soreq, Hermona</creatorcontrib><creatorcontrib>Ben-Aziz, Revital</creatorcontrib><creatorcontrib>Prody, Catherine A.</creatorcontrib><creatorcontrib>Seidman, Shlomo</creatorcontrib><creatorcontrib>Gnatt, Averell</creatorcontrib><creatorcontrib>Neville, Lewis</creatorcontrib><creatorcontrib>Lieman-Hurwitz, Judith</creatorcontrib><creatorcontrib>lev-Lehman, Efrat</creatorcontrib><creatorcontrib>Ginzberg, Dalia</creatorcontrib><creatorcontrib>Lapidot-Lifson, Yaron</creatorcontrib><creatorcontrib>Zakut, Haim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Human Genome Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soreq, Hermona</au><au>Ben-Aziz, Revital</au><au>Prody, Catherine A.</au><au>Seidman, Shlomo</au><au>Gnatt, Averell</au><au>Neville, Lewis</au><au>Lieman-Hurwitz, Judith</au><au>lev-Lehman, Efrat</au><au>Ginzberg, Dalia</au><au>Lapidot-Lifson, Yaron</au><au>Zakut, Haim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1990-12-01</date><risdate>1990</risdate><volume>87</volume><issue>24</issue><spage>9688</spage><epage>9692</epage><pages>9688-9692</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2263619</pmid><doi>10.1073/pnas.87.24.9688</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (24), p.9688-9692
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_16741289
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 550201 - Biochemistry- Tracer Techniques
ACETYLCHOLINE
acetylcholinesterase
Acetylcholinesterase - genetics
Acetylcholinesterase - metabolism
AMINES
AMINO ACID SEQUENCE
Amino acids
AMMONIUM COMPOUNDS
ANIMALS
AUTONOMIC NERVOUS SYSTEM AGENTS
Base Sequence
BASIC BIOLOGICAL SCIENCES
BETA DECAY RADIOISOTOPES
BETA-MINUS DECAY RADIOISOTOPES
Biological and medical sciences
CARBOXYLESTERASES
cDNA
cholinesterase
CLONING
Cloning, Molecular
Complementary DNA
Cytosine
DAYS LIVING RADIOISOTOPES
DNA
DNA HYBRIDIZATION
DNA probes
DNA SEQUENCING
DNA-CLONING
DRUGS
ENZYMES
ESTERASES
ESTERS
Female
Fundamental and applied biological sciences. Psychology
GENE AMPLIFICATION
Gene expression
Gene Library
Genomics
Guanine
Humans
HYBRIDIZATION
HYDROLASES
ISOTOPES
LIGHT NUCLEI
MAMMALS
MAN
MESSENGER-RNA
Models, Molecular
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
MOLECULAR STRUCTURE
NEUROREGULATORS
NUCLEI
Nucleic Acid Conformation
NUCLEIC ACIDS
Nucleotides
ODD-ODD NUCLEI
Oligonucleotide Probes
OLIGONUCLEOTIDES
Oocytes
Oocytes - enzymology
ORGANIC COMPOUNDS
PARASYMPATHOMIMETICS
PHOSPHORUS 32
PHOSPHORUS ISOTOPES
PRIMATES
Protein Biosynthesis
QUATERNARY COMPOUNDS
RADIOISOTOPES
RECOMBINANT DNA
restriction fragment length polymorphism
Restriction Mapping
RNA
RNA, Messenger - genetics
Sequence Homology, Nucleic Acid
Sequencing
STRUCTURAL CHEMICAL ANALYSIS
Torpedo
Transcriptional regulatory elements
VERTEBRATES
Xenopus
title Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Cloning%20and%20Construction%20of%20the%20Coding%20Region%20for%20Human%20Acetylcholinesterase%20Reveals%20a%20G%20+%20C-Rich%20Attenuating%20Structure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soreq,%20Hermona&rft.date=1990-12-01&rft.volume=87&rft.issue=24&rft.spage=9688&rft.epage=9692&rft.pages=9688-9692&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.87.24.9688&rft_dat=%3Cjstor_proqu%3E2356478%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16741289&rft_id=info:pmid/2263619&rft_jstor_id=2356478&rfr_iscdi=true