Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure
To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1990-12, Vol.87 (24), p.9688-9692 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9692 |
---|---|
container_issue | 24 |
container_start_page | 9688 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 87 |
creator | Soreq, Hermona Ben-Aziz, Revital Prody, Catherine A. Seidman, Shlomo Gnatt, Averell Neville, Lewis Lieman-Hurwitz, Judith lev-Lehman, Efrat Ginzberg, Dalia Lapidot-Lifson, Yaron Zakut, Haim |
description | To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification. |
doi_str_mv | 10.1073/pnas.87.24.9688 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16741289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2356478</jstor_id><sourcerecordid>2356478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIVErhzAWQhQQc0Ka21-sPiUsUQYtUhFTgbDmz3mQrx05tb0WP_Od4SWjgAidL837z3tieqnpK8Ixg0ZxuvUkzKWaUzRSX8l51TLAiNWcK36-OMaailoyyh9WjlK4wxqqV-Kg6opQ3nKjj6sen4CyMzkS0cMEPfoWM79Ai-JTjCHkIHoUe5bUttW6SL-1qKvYhovNxYzyag823DtbBDd6mbKNJtlA31riEDDpDb9GivhxgjeY5Wz-aPNl8-WU_Rvu4etAX0j7ZnyfVtw_vvy7O64vPZx8X84saOGtzTSixlAlV5rZCtEsJuOGSU4Al4YwxJYjomFJg2oYvhelF1-Om4xwUgQZYc1K92_lux-XGdmB9jsbpbRw2Jt7qYAb9t-KHtV6FG922tJGl_eWuPaQ86ARDtrCG4L2FrFtMBG6njNf7jBiux_IYejMksM4Zb8OYtMREcozJf0HCBSNUqgKe7kCIIaVo-7uBCdbTBuhpA7QUmjI9bUDpeP7nPe_4_ZcX_dVeNwmM66PxMKSDreKYUswL92bPTQG_5UOQ7kfnsv2eC_nin2QBnu2Aq5RDPEzUtJwJ2fwEtyPb4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16741289</pqid></control><display><type>article</type><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</creator><creatorcontrib>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</creatorcontrib><description>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.87.24.9688</identifier><identifier>PMID: 2263619</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; ACETYLCHOLINE ; acetylcholinesterase ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; AMINES ; AMINO ACID SEQUENCE ; Amino acids ; AMMONIUM COMPOUNDS ; ANIMALS ; AUTONOMIC NERVOUS SYSTEM AGENTS ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; Biological and medical sciences ; CARBOXYLESTERASES ; cDNA ; cholinesterase ; CLONING ; Cloning, Molecular ; Complementary DNA ; Cytosine ; DAYS LIVING RADIOISOTOPES ; DNA ; DNA HYBRIDIZATION ; DNA probes ; DNA SEQUENCING ; DNA-CLONING ; DRUGS ; ENZYMES ; ESTERASES ; ESTERS ; Female ; Fundamental and applied biological sciences. Psychology ; GENE AMPLIFICATION ; Gene expression ; Gene Library ; Genomics ; Guanine ; Humans ; HYBRIDIZATION ; HYDROLASES ; ISOTOPES ; LIGHT NUCLEI ; MAMMALS ; MAN ; MESSENGER-RNA ; Models, Molecular ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; MOLECULAR STRUCTURE ; NEUROREGULATORS ; NUCLEI ; Nucleic Acid Conformation ; NUCLEIC ACIDS ; Nucleotides ; ODD-ODD NUCLEI ; Oligonucleotide Probes ; OLIGONUCLEOTIDES ; Oocytes ; Oocytes - enzymology ; ORGANIC COMPOUNDS ; PARASYMPATHOMIMETICS ; PHOSPHORUS 32 ; PHOSPHORUS ISOTOPES ; PRIMATES ; Protein Biosynthesis ; QUATERNARY COMPOUNDS ; RADIOISOTOPES ; RECOMBINANT DNA ; restriction fragment length polymorphism ; Restriction Mapping ; RNA ; RNA, Messenger - genetics ; Sequence Homology, Nucleic Acid ; Sequencing ; STRUCTURAL CHEMICAL ANALYSIS ; Torpedo ; Transcriptional regulatory elements ; VERTEBRATES ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (24), p.9688-9692</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/87/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2356478$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2356478$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19602206$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2263619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5017054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soreq, Hermona</creatorcontrib><creatorcontrib>Ben-Aziz, Revital</creatorcontrib><creatorcontrib>Prody, Catherine A.</creatorcontrib><creatorcontrib>Seidman, Shlomo</creatorcontrib><creatorcontrib>Gnatt, Averell</creatorcontrib><creatorcontrib>Neville, Lewis</creatorcontrib><creatorcontrib>Lieman-Hurwitz, Judith</creatorcontrib><creatorcontrib>lev-Lehman, Efrat</creatorcontrib><creatorcontrib>Ginzberg, Dalia</creatorcontrib><creatorcontrib>Lapidot-Lifson, Yaron</creatorcontrib><creatorcontrib>Zakut, Haim</creatorcontrib><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>ACETYLCHOLINE</subject><subject>acetylcholinesterase</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>AMINES</subject><subject>AMINO ACID SEQUENCE</subject><subject>Amino acids</subject><subject>AMMONIUM COMPOUNDS</subject><subject>ANIMALS</subject><subject>AUTONOMIC NERVOUS SYSTEM AGENTS</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>Biological and medical sciences</subject><subject>CARBOXYLESTERASES</subject><subject>cDNA</subject><subject>cholinesterase</subject><subject>CLONING</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Cytosine</subject><subject>DAYS LIVING RADIOISOTOPES</subject><subject>DNA</subject><subject>DNA HYBRIDIZATION</subject><subject>DNA probes</subject><subject>DNA SEQUENCING</subject><subject>DNA-CLONING</subject><subject>DRUGS</subject><subject>ENZYMES</subject><subject>ESTERASES</subject><subject>ESTERS</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE AMPLIFICATION</subject><subject>Gene expression</subject><subject>Gene Library</subject><subject>Genomics</subject><subject>Guanine</subject><subject>Humans</subject><subject>HYBRIDIZATION</subject><subject>HYDROLASES</subject><subject>ISOTOPES</subject><subject>LIGHT NUCLEI</subject><subject>MAMMALS</subject><subject>MAN</subject><subject>MESSENGER-RNA</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>MOLECULAR STRUCTURE</subject><subject>NEUROREGULATORS</subject><subject>NUCLEI</subject><subject>Nucleic Acid Conformation</subject><subject>NUCLEIC ACIDS</subject><subject>Nucleotides</subject><subject>ODD-ODD NUCLEI</subject><subject>Oligonucleotide Probes</subject><subject>OLIGONUCLEOTIDES</subject><subject>Oocytes</subject><subject>Oocytes - enzymology</subject><subject>ORGANIC COMPOUNDS</subject><subject>PARASYMPATHOMIMETICS</subject><subject>PHOSPHORUS 32</subject><subject>PHOSPHORUS ISOTOPES</subject><subject>PRIMATES</subject><subject>Protein Biosynthesis</subject><subject>QUATERNARY COMPOUNDS</subject><subject>RADIOISOTOPES</subject><subject>RECOMBINANT DNA</subject><subject>restriction fragment length polymorphism</subject><subject>Restriction Mapping</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sequencing</subject><subject>STRUCTURAL CHEMICAL ANALYSIS</subject><subject>Torpedo</subject><subject>Transcriptional regulatory elements</subject><subject>VERTEBRATES</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1vEzEQxVcIVErhzAWQhQQc0Ka21-sPiUsUQYtUhFTgbDmz3mQrx05tb0WP_Od4SWjgAidL837z3tieqnpK8Ixg0ZxuvUkzKWaUzRSX8l51TLAiNWcK36-OMaailoyyh9WjlK4wxqqV-Kg6opQ3nKjj6sen4CyMzkS0cMEPfoWM79Ai-JTjCHkIHoUe5bUttW6SL-1qKvYhovNxYzyag823DtbBDd6mbKNJtlA31riEDDpDb9GivhxgjeY5Wz-aPNl8-WU_Rvu4etAX0j7ZnyfVtw_vvy7O64vPZx8X84saOGtzTSixlAlV5rZCtEsJuOGSU4Al4YwxJYjomFJg2oYvhelF1-Om4xwUgQZYc1K92_lux-XGdmB9jsbpbRw2Jt7qYAb9t-KHtV6FG922tJGl_eWuPaQ86ARDtrCG4L2FrFtMBG6njNf7jBiux_IYejMksM4Zb8OYtMREcozJf0HCBSNUqgKe7kCIIaVo-7uBCdbTBuhpA7QUmjI9bUDpeP7nPe_4_ZcX_dVeNwmM66PxMKSDreKYUswL92bPTQG_5UOQ7kfnsv2eC_nin2QBnu2Aq5RDPEzUtJwJ2fwEtyPb4g</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Soreq, Hermona</creator><creator>Ben-Aziz, Revital</creator><creator>Prody, Catherine A.</creator><creator>Seidman, Shlomo</creator><creator>Gnatt, Averell</creator><creator>Neville, Lewis</creator><creator>Lieman-Hurwitz, Judith</creator><creator>lev-Lehman, Efrat</creator><creator>Ginzberg, Dalia</creator><creator>Lapidot-Lifson, Yaron</creator><creator>Zakut, Haim</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T3</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19901201</creationdate><title>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</title><author>Soreq, Hermona ; Ben-Aziz, Revital ; Prody, Catherine A. ; Seidman, Shlomo ; Gnatt, Averell ; Neville, Lewis ; Lieman-Hurwitz, Judith ; lev-Lehman, Efrat ; Ginzberg, Dalia ; Lapidot-Lifson, Yaron ; Zakut, Haim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-121e2479636e775b8c036862ccb164449717d499ca536b7af7df03d66c91c3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>ACETYLCHOLINE</topic><topic>acetylcholinesterase</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>AMINES</topic><topic>AMINO ACID SEQUENCE</topic><topic>Amino acids</topic><topic>AMMONIUM COMPOUNDS</topic><topic>ANIMALS</topic><topic>AUTONOMIC NERVOUS SYSTEM AGENTS</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>Biological and medical sciences</topic><topic>CARBOXYLESTERASES</topic><topic>cDNA</topic><topic>cholinesterase</topic><topic>CLONING</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Cytosine</topic><topic>DAYS LIVING RADIOISOTOPES</topic><topic>DNA</topic><topic>DNA HYBRIDIZATION</topic><topic>DNA probes</topic><topic>DNA SEQUENCING</topic><topic>DNA-CLONING</topic><topic>DRUGS</topic><topic>ENZYMES</topic><topic>ESTERASES</topic><topic>ESTERS</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE AMPLIFICATION</topic><topic>Gene expression</topic><topic>Gene Library</topic><topic>Genomics</topic><topic>Guanine</topic><topic>Humans</topic><topic>HYBRIDIZATION</topic><topic>HYDROLASES</topic><topic>ISOTOPES</topic><topic>LIGHT NUCLEI</topic><topic>MAMMALS</topic><topic>MAN</topic><topic>MESSENGER-RNA</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>MOLECULAR STRUCTURE</topic><topic>NEUROREGULATORS</topic><topic>NUCLEI</topic><topic>Nucleic Acid Conformation</topic><topic>NUCLEIC ACIDS</topic><topic>Nucleotides</topic><topic>ODD-ODD NUCLEI</topic><topic>Oligonucleotide Probes</topic><topic>OLIGONUCLEOTIDES</topic><topic>Oocytes</topic><topic>Oocytes - enzymology</topic><topic>ORGANIC COMPOUNDS</topic><topic>PARASYMPATHOMIMETICS</topic><topic>PHOSPHORUS 32</topic><topic>PHOSPHORUS ISOTOPES</topic><topic>PRIMATES</topic><topic>Protein Biosynthesis</topic><topic>QUATERNARY COMPOUNDS</topic><topic>RADIOISOTOPES</topic><topic>RECOMBINANT DNA</topic><topic>restriction fragment length polymorphism</topic><topic>Restriction Mapping</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sequencing</topic><topic>STRUCTURAL CHEMICAL ANALYSIS</topic><topic>Torpedo</topic><topic>Transcriptional regulatory elements</topic><topic>VERTEBRATES</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soreq, Hermona</creatorcontrib><creatorcontrib>Ben-Aziz, Revital</creatorcontrib><creatorcontrib>Prody, Catherine A.</creatorcontrib><creatorcontrib>Seidman, Shlomo</creatorcontrib><creatorcontrib>Gnatt, Averell</creatorcontrib><creatorcontrib>Neville, Lewis</creatorcontrib><creatorcontrib>Lieman-Hurwitz, Judith</creatorcontrib><creatorcontrib>lev-Lehman, Efrat</creatorcontrib><creatorcontrib>Ginzberg, Dalia</creatorcontrib><creatorcontrib>Lapidot-Lifson, Yaron</creatorcontrib><creatorcontrib>Zakut, Haim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Human Genome Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soreq, Hermona</au><au>Ben-Aziz, Revital</au><au>Prody, Catherine A.</au><au>Seidman, Shlomo</au><au>Gnatt, Averell</au><au>Neville, Lewis</au><au>Lieman-Hurwitz, Judith</au><au>lev-Lehman, Efrat</au><au>Ginzberg, Dalia</au><au>Lapidot-Lifson, Yaron</au><au>Zakut, Haim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1990-12-01</date><risdate>1990</risdate><volume>87</volume><issue>24</issue><spage>9688</spage><epage>9692</epage><pages>9688-9692</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>To study the primary structure of human acetylcholinesterase (AcChoEase; EC 3.1.1.7) and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase (BtChoEase; EC 3.1.1.8). However, these cDNA clones were all truncated within a 300-nucleotide-long G+C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy (-117 kcal/mol) downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the BtChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2263619</pmid><doi>10.1073/pnas.87.24.9688</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1990-12, Vol.87 (24), p.9688-9692 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_16741289 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 550201 - Biochemistry- Tracer Techniques ACETYLCHOLINE acetylcholinesterase Acetylcholinesterase - genetics Acetylcholinesterase - metabolism AMINES AMINO ACID SEQUENCE Amino acids AMMONIUM COMPOUNDS ANIMALS AUTONOMIC NERVOUS SYSTEM AGENTS Base Sequence BASIC BIOLOGICAL SCIENCES BETA DECAY RADIOISOTOPES BETA-MINUS DECAY RADIOISOTOPES Biological and medical sciences CARBOXYLESTERASES cDNA cholinesterase CLONING Cloning, Molecular Complementary DNA Cytosine DAYS LIVING RADIOISOTOPES DNA DNA HYBRIDIZATION DNA probes DNA SEQUENCING DNA-CLONING DRUGS ENZYMES ESTERASES ESTERS Female Fundamental and applied biological sciences. Psychology GENE AMPLIFICATION Gene expression Gene Library Genomics Guanine Humans HYBRIDIZATION HYDROLASES ISOTOPES LIGHT NUCLEI MAMMALS MAN MESSENGER-RNA Models, Molecular Molecular and cellular biology Molecular genetics Molecular Sequence Data MOLECULAR STRUCTURE NEUROREGULATORS NUCLEI Nucleic Acid Conformation NUCLEIC ACIDS Nucleotides ODD-ODD NUCLEI Oligonucleotide Probes OLIGONUCLEOTIDES Oocytes Oocytes - enzymology ORGANIC COMPOUNDS PARASYMPATHOMIMETICS PHOSPHORUS 32 PHOSPHORUS ISOTOPES PRIMATES Protein Biosynthesis QUATERNARY COMPOUNDS RADIOISOTOPES RECOMBINANT DNA restriction fragment length polymorphism Restriction Mapping RNA RNA, Messenger - genetics Sequence Homology, Nucleic Acid Sequencing STRUCTURAL CHEMICAL ANALYSIS Torpedo Transcriptional regulatory elements VERTEBRATES Xenopus |
title | Molecular Cloning and Construction of the Coding Region for Human Acetylcholinesterase Reveals a G + C-Rich Attenuating Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Cloning%20and%20Construction%20of%20the%20Coding%20Region%20for%20Human%20Acetylcholinesterase%20Reveals%20a%20G%20+%20C-Rich%20Attenuating%20Structure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soreq,%20Hermona&rft.date=1990-12-01&rft.volume=87&rft.issue=24&rft.spage=9688&rft.epage=9692&rft.pages=9688-9692&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.87.24.9688&rft_dat=%3Cjstor_proqu%3E2356478%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16741289&rft_id=info:pmid/2263619&rft_jstor_id=2356478&rfr_iscdi=true |