The glacial geomorphology of the Antarctic ice sheet bed

In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antarctic science 2014-12, Vol.26 (6), p.724-741
Hauptverfasser: Jamieson, Stewart S.R., Stokes, Chris R., Ross, Neil, Rippin, David M., Bingham, Robert G., Wilson, Douglas S., Margold, Martin, Bentley, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 6
container_start_page 724
container_title Antarctic science
container_volume 26
creator Jamieson, Stewart S.R.
Stokes, Chris R.
Ross, Neil
Rippin, David M.
Bingham, Robert G.
Wilson, Douglas S.
Margold, Martin
Bentley, Michael J.
description In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.
doi_str_mv 10.1017/S0954102014000212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673394512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102014000212</cupid><sourcerecordid>3606904831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4c70427d163d1a1874857f4b13668b15a16c12322be73bee376f810c4cb9d7253</originalsourceid><addsrcrecordid>eNp1kE1Lw0AYhBdRsFZ_gLeAFy_R993P5FiKX1DwYD2HzeZNmpJ062566L83pT2I4mkO88wwDGO3CA8IaB4_IFcSgQNKAODIz9gEhVYpB5Ofs8nBTg_-JbuKcQ2APFMwYdlyRUnTWdfaLmnI9z5sV77zzT7xdTKM5mwz2OCG1iWtoySuiIakpOqaXdS2i3Rz0in7fH5azl_TxfvL23y2SJ3IxZBKZ0ByU6EWFVrMjMyUqWU5btNZicqidsgF5yUZURIJo-sMwUlX5pXhSkzZ_bF3G_zXjuJQ9G101HV2Q34XC9RGiFyqsWTK7n6ha78Lm3HdSKlMK8M5jhQeKRd8jIHqYhva3oZ9gVAcviz-fDlmxClj-zK0VUM_qv9NfQM-znI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658657221</pqid></control><display><type>article</type><title>The glacial geomorphology of the Antarctic ice sheet bed</title><source>Cambridge University Press Journals Complete</source><creator>Jamieson, Stewart S.R. ; Stokes, Chris R. ; Ross, Neil ; Rippin, David M. ; Bingham, Robert G. ; Wilson, Douglas S. ; Margold, Martin ; Bentley, Michael J.</creator><creatorcontrib>Jamieson, Stewart S.R. ; Stokes, Chris R. ; Ross, Neil ; Rippin, David M. ; Bingham, Robert G. ; Wilson, Douglas S. ; Margold, Martin ; Bentley, Michael J.</creatorcontrib><description>In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102014000212</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Classification ; Coastal erosion ; Erosion control ; Geomorphology ; Glacial erosion ; Hypsometry ; Ice ; Landscape ; Original Article ; Topography</subject><ispartof>Antarctic science, 2014-12, Vol.26 (6), p.724-741</ispartof><rights>Antarctic Science Ltd 2014</rights><rights>Antarctic Science Ltd 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-4c70427d163d1a1874857f4b13668b15a16c12322be73bee376f810c4cb9d7253</citedby><cites>FETCH-LOGICAL-c393t-4c70427d163d1a1874857f4b13668b15a16c12322be73bee376f810c4cb9d7253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102014000212/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Jamieson, Stewart S.R.</creatorcontrib><creatorcontrib>Stokes, Chris R.</creatorcontrib><creatorcontrib>Ross, Neil</creatorcontrib><creatorcontrib>Rippin, David M.</creatorcontrib><creatorcontrib>Bingham, Robert G.</creatorcontrib><creatorcontrib>Wilson, Douglas S.</creatorcontrib><creatorcontrib>Margold, Martin</creatorcontrib><creatorcontrib>Bentley, Michael J.</creatorcontrib><title>The glacial geomorphology of the Antarctic ice sheet bed</title><title>Antarctic science</title><addtitle>Antartic science</addtitle><description>In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.</description><subject>Classification</subject><subject>Coastal erosion</subject><subject>Erosion control</subject><subject>Geomorphology</subject><subject>Glacial erosion</subject><subject>Hypsometry</subject><subject>Ice</subject><subject>Landscape</subject><subject>Original Article</subject><subject>Topography</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AYhBdRsFZ_gLeAFy_R993P5FiKX1DwYD2HzeZNmpJ062566L83pT2I4mkO88wwDGO3CA8IaB4_IFcSgQNKAODIz9gEhVYpB5Ofs8nBTg_-JbuKcQ2APFMwYdlyRUnTWdfaLmnI9z5sV77zzT7xdTKM5mwz2OCG1iWtoySuiIakpOqaXdS2i3Rz0in7fH5azl_TxfvL23y2SJ3IxZBKZ0ByU6EWFVrMjMyUqWU5btNZicqidsgF5yUZURIJo-sMwUlX5pXhSkzZ_bF3G_zXjuJQ9G101HV2Q34XC9RGiFyqsWTK7n6ha78Lm3HdSKlMK8M5jhQeKRd8jIHqYhva3oZ9gVAcviz-fDlmxClj-zK0VUM_qv9NfQM-znI2</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Jamieson, Stewart S.R.</creator><creator>Stokes, Chris R.</creator><creator>Ross, Neil</creator><creator>Rippin, David M.</creator><creator>Bingham, Robert G.</creator><creator>Wilson, Douglas S.</creator><creator>Margold, Martin</creator><creator>Bentley, Michael J.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141201</creationdate><title>The glacial geomorphology of the Antarctic ice sheet bed</title><author>Jamieson, Stewart S.R. ; Stokes, Chris R. ; Ross, Neil ; Rippin, David M. ; Bingham, Robert G. ; Wilson, Douglas S. ; Margold, Martin ; Bentley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4c70427d163d1a1874857f4b13668b15a16c12322be73bee376f810c4cb9d7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Coastal erosion</topic><topic>Erosion control</topic><topic>Geomorphology</topic><topic>Glacial erosion</topic><topic>Hypsometry</topic><topic>Ice</topic><topic>Landscape</topic><topic>Original Article</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamieson, Stewart S.R.</creatorcontrib><creatorcontrib>Stokes, Chris R.</creatorcontrib><creatorcontrib>Ross, Neil</creatorcontrib><creatorcontrib>Rippin, David M.</creatorcontrib><creatorcontrib>Bingham, Robert G.</creatorcontrib><creatorcontrib>Wilson, Douglas S.</creatorcontrib><creatorcontrib>Margold, Martin</creatorcontrib><creatorcontrib>Bentley, Michael J.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamieson, Stewart S.R.</au><au>Stokes, Chris R.</au><au>Ross, Neil</au><au>Rippin, David M.</au><au>Bingham, Robert G.</au><au>Wilson, Douglas S.</au><au>Margold, Martin</au><au>Bentley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The glacial geomorphology of the Antarctic ice sheet bed</atitle><jtitle>Antarctic science</jtitle><addtitle>Antartic science</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>26</volume><issue>6</issue><spage>724</spage><epage>741</epage><pages>724-741</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102014000212</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-1020
ispartof Antarctic science, 2014-12, Vol.26 (6), p.724-741
issn 0954-1020
1365-2079
language eng
recordid cdi_proquest_miscellaneous_1673394512
source Cambridge University Press Journals Complete
subjects Classification
Coastal erosion
Erosion control
Geomorphology
Glacial erosion
Hypsometry
Ice
Landscape
Original Article
Topography
title The glacial geomorphology of the Antarctic ice sheet bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20glacial%20geomorphology%20of%20the%20Antarctic%20ice%20sheet%20bed&rft.jtitle=Antarctic%20science&rft.au=Jamieson,%20Stewart%20S.R.&rft.date=2014-12-01&rft.volume=26&rft.issue=6&rft.spage=724&rft.epage=741&rft.pages=724-741&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102014000212&rft_dat=%3Cproquest_cross%3E3606904831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658657221&rft_id=info:pmid/&rft_cupid=10_1017_S0954102014000212&rfr_iscdi=true