Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor
Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to i...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2015-04, Vol.99 (7), p.3279-3290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3290 |
---|---|
container_issue | 7 |
container_start_page | 3279 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Tian, Hai-Long Zhao, Jie-Yu Zhang, Hong-Yu Chi, Chang-Qiao Li, Bao-An Wu, Xiao-Lei |
description | Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage. |
doi_str_mv | 10.1007/s00253-014-6204-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673381008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429602166</galeid><sourcerecordid>A429602166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokPhB7ABS2xgkXKvn8myVAUqVUKidG15EmfGVRIPtiPov68zKY9BCCEvbOl-59g-OkXxHOEEAdTbCEAFKwF5KSnwUj0oVsgZLUEif1isAJUolairo-JJjDcASCspHxdHVHCWHepVsXtnmmSDMz1p_DBMo0u3JG5dl4jp_bgh31zakrS1pNmacWMjcSPxOxtMcn7cq8bWzef9xJDBDutgRluambEtWTvfuX4gweabfHhaPOpMH-2z-_24uH5__uXsY3n56cPF2ell2UimUom4rhSIFniDorKgOslrygGgQQasg7prJDXWIEXecaSctszUlrXCmJk5Ll4vvrvgv042Jj242Ni-z2_zU9QoFWNVDqH6D1QKxEpJmtFXf6A3fgo5hz3FWV0JJX9RG9Nb7cbOp2Ca2VSfclpLoBnO1MlfqLxaO7gcq82x2UPBmwNBZpL9njZmilFfXH0-ZHFhm-BjDLbTu-AGE241gp7Lo5fy6FwePZdHq6x5cf-5aT3Y9qfiR1syQBcg5lEuQ_jt9_9wfbmIOuO12QQX9fUVBRS5jlzUiOwO3q3UgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664398576</pqid></control><display><type>article</type><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</creator><creatorcontrib>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</creatorcontrib><description>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-6204-7</identifier><identifier>PMID: 25431009</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acidovorax ; Actinobacteria ; Aeromonas ; alpha-Proteobacteria ; ammonium nitrogen ; Analysis ; Azospira ; Bacteria ; Bacteria - genetics ; bacterial communities ; biofilm ; Biofilms ; Biological Oxygen Demand Analysis ; Biomedical and Life Sciences ; Bioreactors ; Bioreactors - microbiology ; Biotechnology ; Chemical engineering ; Chemical oxygen demand ; Comamonas ; Community composition ; community structure ; Denitrification ; denitrifying microorganisms ; Enterobacter ; Environmental aspects ; Environmental Biotechnology ; Equipment Design ; Flavobacterium ; Flow velocity ; genes ; Hollow fiber membranes ; Hydrogenophaga ; Laboratories ; Life Sciences ; Membrane reactors ; Membranes, Artificial ; Microbial colonies ; Microbial Consortia - genetics ; Microbial Genetics and Genomics ; Microbial mats ; Microbiology ; nitrifying bacteria ; Nitrogen ; Pallets ; Pollutants ; Reactors ; Real-Time Polymerase Chain Reaction ; ribosomal RNA ; RNA, Ribosomal, 16S ; sequence analysis ; Sewage ; Sewage treatment ; sodium bicarbonate ; Studies ; Thauera ; Thermomonas ; Waste Disposal, Fluid - instrumentation ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment ; Water treatment</subject><ispartof>Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3279-3290</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</citedby><cites>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-6204-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-6204-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25431009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Hai-Long</creatorcontrib><creatorcontrib>Zhao, Jie-Yu</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Chi, Chang-Qiao</creatorcontrib><creatorcontrib>Li, Bao-An</creatorcontrib><creatorcontrib>Wu, Xiao-Lei</creatorcontrib><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</description><subject>Acidovorax</subject><subject>Actinobacteria</subject><subject>Aeromonas</subject><subject>alpha-Proteobacteria</subject><subject>ammonium nitrogen</subject><subject>Analysis</subject><subject>Azospira</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>bacterial communities</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biological Oxygen Demand Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Chemical oxygen demand</subject><subject>Comamonas</subject><subject>Community composition</subject><subject>community structure</subject><subject>Denitrification</subject><subject>denitrifying microorganisms</subject><subject>Enterobacter</subject><subject>Environmental aspects</subject><subject>Environmental Biotechnology</subject><subject>Equipment Design</subject><subject>Flavobacterium</subject><subject>Flow velocity</subject><subject>genes</subject><subject>Hollow fiber membranes</subject><subject>Hydrogenophaga</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Membrane reactors</subject><subject>Membranes, Artificial</subject><subject>Microbial colonies</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial mats</subject><subject>Microbiology</subject><subject>nitrifying bacteria</subject><subject>Nitrogen</subject><subject>Pallets</subject><subject>Pollutants</subject><subject>Reactors</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S</subject><subject>sequence analysis</subject><subject>Sewage</subject><subject>Sewage treatment</subject><subject>sodium bicarbonate</subject><subject>Studies</subject><subject>Thauera</subject><subject>Thermomonas</subject><subject>Waste Disposal, Fluid - instrumentation</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAUhSMEokPhB7ABS2xgkXKvn8myVAUqVUKidG15EmfGVRIPtiPov68zKY9BCCEvbOl-59g-OkXxHOEEAdTbCEAFKwF5KSnwUj0oVsgZLUEif1isAJUolairo-JJjDcASCspHxdHVHCWHepVsXtnmmSDMz1p_DBMo0u3JG5dl4jp_bgh31zakrS1pNmacWMjcSPxOxtMcn7cq8bWzef9xJDBDutgRluambEtWTvfuX4gweabfHhaPOpMH-2z-_24uH5__uXsY3n56cPF2ell2UimUom4rhSIFniDorKgOslrygGgQQasg7prJDXWIEXecaSctszUlrXCmJk5Ll4vvrvgv042Jj242Ni-z2_zU9QoFWNVDqH6D1QKxEpJmtFXf6A3fgo5hz3FWV0JJX9RG9Nb7cbOp2Ca2VSfclpLoBnO1MlfqLxaO7gcq82x2UPBmwNBZpL9njZmilFfXH0-ZHFhm-BjDLbTu-AGE241gp7Lo5fy6FwePZdHq6x5cf-5aT3Y9qfiR1syQBcg5lEuQ_jt9_9wfbmIOuO12QQX9fUVBRS5jlzUiOwO3q3UgA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Tian, Hai-Long</creator><creator>Zhao, Jie-Yu</creator><creator>Zhang, Hong-Yu</creator><creator>Chi, Chang-Qiao</creator><creator>Li, Bao-An</creator><creator>Wu, Xiao-Lei</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20150401</creationdate><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><author>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidovorax</topic><topic>Actinobacteria</topic><topic>Aeromonas</topic><topic>alpha-Proteobacteria</topic><topic>ammonium nitrogen</topic><topic>Analysis</topic><topic>Azospira</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>bacterial communities</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biological Oxygen Demand Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Chemical oxygen demand</topic><topic>Comamonas</topic><topic>Community composition</topic><topic>community structure</topic><topic>Denitrification</topic><topic>denitrifying microorganisms</topic><topic>Enterobacter</topic><topic>Environmental aspects</topic><topic>Environmental Biotechnology</topic><topic>Equipment Design</topic><topic>Flavobacterium</topic><topic>Flow velocity</topic><topic>genes</topic><topic>Hollow fiber membranes</topic><topic>Hydrogenophaga</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Membrane reactors</topic><topic>Membranes, Artificial</topic><topic>Microbial colonies</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial mats</topic><topic>Microbiology</topic><topic>nitrifying bacteria</topic><topic>Nitrogen</topic><topic>Pallets</topic><topic>Pollutants</topic><topic>Reactors</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S</topic><topic>sequence analysis</topic><topic>Sewage</topic><topic>Sewage treatment</topic><topic>sodium bicarbonate</topic><topic>Studies</topic><topic>Thauera</topic><topic>Thermomonas</topic><topic>Waste Disposal, Fluid - instrumentation</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hai-Long</creatorcontrib><creatorcontrib>Zhao, Jie-Yu</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Chi, Chang-Qiao</creatorcontrib><creatorcontrib>Li, Bao-An</creatorcontrib><creatorcontrib>Wu, Xiao-Lei</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hai-Long</au><au>Zhao, Jie-Yu</au><au>Zhang, Hong-Yu</au><au>Chi, Chang-Qiao</au><au>Li, Bao-An</au><au>Wu, Xiao-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>99</volume><issue>7</issue><spage>3279</spage><epage>3290</epage><pages>3279-3290</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25431009</pmid><doi>10.1007/s00253-014-6204-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3279-3290 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1673381008 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acidovorax Actinobacteria Aeromonas alpha-Proteobacteria ammonium nitrogen Analysis Azospira Bacteria Bacteria - genetics bacterial communities biofilm Biofilms Biological Oxygen Demand Analysis Biomedical and Life Sciences Bioreactors Bioreactors - microbiology Biotechnology Chemical engineering Chemical oxygen demand Comamonas Community composition community structure Denitrification denitrifying microorganisms Enterobacter Environmental aspects Environmental Biotechnology Equipment Design Flavobacterium Flow velocity genes Hollow fiber membranes Hydrogenophaga Laboratories Life Sciences Membrane reactors Membranes, Artificial Microbial colonies Microbial Consortia - genetics Microbial Genetics and Genomics Microbial mats Microbiology nitrifying bacteria Nitrogen Pallets Pollutants Reactors Real-Time Polymerase Chain Reaction ribosomal RNA RNA, Ribosomal, 16S sequence analysis Sewage Sewage treatment sodium bicarbonate Studies Thauera Thermomonas Waste Disposal, Fluid - instrumentation Waste Disposal, Fluid - methods Wastewater Wastewater treatment Water treatment |
title | Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20community%20shift%20along%20with%20the%20changes%20in%20operational%20conditions%20in%20a%20membrane-aerated%20biofilm%20reactor&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tian,%20Hai-Long&rft.date=2015-04-01&rft.volume=99&rft.issue=7&rft.spage=3279&rft.epage=3290&rft.pages=3279-3290&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-6204-7&rft_dat=%3Cgale_proqu%3EA429602166%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664398576&rft_id=info:pmid/25431009&rft_galeid=A429602166&rfr_iscdi=true |