Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor

Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2015-04, Vol.99 (7), p.3279-3290
Hauptverfasser: Tian, Hai-Long, Zhao, Jie-Yu, Zhang, Hong-Yu, Chi, Chang-Qiao, Li, Bao-An, Wu, Xiao-Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3290
container_issue 7
container_start_page 3279
container_title Applied microbiology and biotechnology
container_volume 99
creator Tian, Hai-Long
Zhao, Jie-Yu
Zhang, Hong-Yu
Chi, Chang-Qiao
Li, Bao-An
Wu, Xiao-Lei
description Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.
doi_str_mv 10.1007/s00253-014-6204-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673381008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429602166</galeid><sourcerecordid>A429602166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokPhB7ABS2xgkXKvn8myVAUqVUKidG15EmfGVRIPtiPov68zKY9BCCEvbOl-59g-OkXxHOEEAdTbCEAFKwF5KSnwUj0oVsgZLUEif1isAJUolairo-JJjDcASCspHxdHVHCWHepVsXtnmmSDMz1p_DBMo0u3JG5dl4jp_bgh31zakrS1pNmacWMjcSPxOxtMcn7cq8bWzef9xJDBDutgRluambEtWTvfuX4gweabfHhaPOpMH-2z-_24uH5__uXsY3n56cPF2ell2UimUom4rhSIFniDorKgOslrygGgQQasg7prJDXWIEXecaSctszUlrXCmJk5Ll4vvrvgv042Jj242Ni-z2_zU9QoFWNVDqH6D1QKxEpJmtFXf6A3fgo5hz3FWV0JJX9RG9Nb7cbOp2Ca2VSfclpLoBnO1MlfqLxaO7gcq82x2UPBmwNBZpL9njZmilFfXH0-ZHFhm-BjDLbTu-AGE241gp7Lo5fy6FwePZdHq6x5cf-5aT3Y9qfiR1syQBcg5lEuQ_jt9_9wfbmIOuO12QQX9fUVBRS5jlzUiOwO3q3UgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664398576</pqid></control><display><type>article</type><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</creator><creatorcontrib>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</creatorcontrib><description>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-6204-7</identifier><identifier>PMID: 25431009</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acidovorax ; Actinobacteria ; Aeromonas ; alpha-Proteobacteria ; ammonium nitrogen ; Analysis ; Azospira ; Bacteria ; Bacteria - genetics ; bacterial communities ; biofilm ; Biofilms ; Biological Oxygen Demand Analysis ; Biomedical and Life Sciences ; Bioreactors ; Bioreactors - microbiology ; Biotechnology ; Chemical engineering ; Chemical oxygen demand ; Comamonas ; Community composition ; community structure ; Denitrification ; denitrifying microorganisms ; Enterobacter ; Environmental aspects ; Environmental Biotechnology ; Equipment Design ; Flavobacterium ; Flow velocity ; genes ; Hollow fiber membranes ; Hydrogenophaga ; Laboratories ; Life Sciences ; Membrane reactors ; Membranes, Artificial ; Microbial colonies ; Microbial Consortia - genetics ; Microbial Genetics and Genomics ; Microbial mats ; Microbiology ; nitrifying bacteria ; Nitrogen ; Pallets ; Pollutants ; Reactors ; Real-Time Polymerase Chain Reaction ; ribosomal RNA ; RNA, Ribosomal, 16S ; sequence analysis ; Sewage ; Sewage treatment ; sodium bicarbonate ; Studies ; Thauera ; Thermomonas ; Waste Disposal, Fluid - instrumentation ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment ; Water treatment</subject><ispartof>Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3279-3290</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</citedby><cites>FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-6204-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-6204-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25431009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Hai-Long</creatorcontrib><creatorcontrib>Zhao, Jie-Yu</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Chi, Chang-Qiao</creatorcontrib><creatorcontrib>Li, Bao-An</creatorcontrib><creatorcontrib>Wu, Xiao-Lei</creatorcontrib><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</description><subject>Acidovorax</subject><subject>Actinobacteria</subject><subject>Aeromonas</subject><subject>alpha-Proteobacteria</subject><subject>ammonium nitrogen</subject><subject>Analysis</subject><subject>Azospira</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>bacterial communities</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biological Oxygen Demand Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Chemical oxygen demand</subject><subject>Comamonas</subject><subject>Community composition</subject><subject>community structure</subject><subject>Denitrification</subject><subject>denitrifying microorganisms</subject><subject>Enterobacter</subject><subject>Environmental aspects</subject><subject>Environmental Biotechnology</subject><subject>Equipment Design</subject><subject>Flavobacterium</subject><subject>Flow velocity</subject><subject>genes</subject><subject>Hollow fiber membranes</subject><subject>Hydrogenophaga</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Membrane reactors</subject><subject>Membranes, Artificial</subject><subject>Microbial colonies</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial mats</subject><subject>Microbiology</subject><subject>nitrifying bacteria</subject><subject>Nitrogen</subject><subject>Pallets</subject><subject>Pollutants</subject><subject>Reactors</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S</subject><subject>sequence analysis</subject><subject>Sewage</subject><subject>Sewage treatment</subject><subject>sodium bicarbonate</subject><subject>Studies</subject><subject>Thauera</subject><subject>Thermomonas</subject><subject>Waste Disposal, Fluid - instrumentation</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAUhSMEokPhB7ABS2xgkXKvn8myVAUqVUKidG15EmfGVRIPtiPov68zKY9BCCEvbOl-59g-OkXxHOEEAdTbCEAFKwF5KSnwUj0oVsgZLUEif1isAJUolairo-JJjDcASCspHxdHVHCWHepVsXtnmmSDMz1p_DBMo0u3JG5dl4jp_bgh31zakrS1pNmacWMjcSPxOxtMcn7cq8bWzef9xJDBDutgRluambEtWTvfuX4gweabfHhaPOpMH-2z-_24uH5__uXsY3n56cPF2ell2UimUom4rhSIFniDorKgOslrygGgQQasg7prJDXWIEXecaSctszUlrXCmJk5Ll4vvrvgv042Jj242Ni-z2_zU9QoFWNVDqH6D1QKxEpJmtFXf6A3fgo5hz3FWV0JJX9RG9Nb7cbOp2Ca2VSfclpLoBnO1MlfqLxaO7gcq82x2UPBmwNBZpL9njZmilFfXH0-ZHFhm-BjDLbTu-AGE241gp7Lo5fy6FwePZdHq6x5cf-5aT3Y9qfiR1syQBcg5lEuQ_jt9_9wfbmIOuO12QQX9fUVBRS5jlzUiOwO3q3UgA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Tian, Hai-Long</creator><creator>Zhao, Jie-Yu</creator><creator>Zhang, Hong-Yu</creator><creator>Chi, Chang-Qiao</creator><creator>Li, Bao-An</creator><creator>Wu, Xiao-Lei</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20150401</creationdate><title>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</title><author>Tian, Hai-Long ; Zhao, Jie-Yu ; Zhang, Hong-Yu ; Chi, Chang-Qiao ; Li, Bao-An ; Wu, Xiao-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-11b8705d04c158e07f64924000c1303f09fc62aea1214f41242d3a9e3d5aa0c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidovorax</topic><topic>Actinobacteria</topic><topic>Aeromonas</topic><topic>alpha-Proteobacteria</topic><topic>ammonium nitrogen</topic><topic>Analysis</topic><topic>Azospira</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>bacterial communities</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biological Oxygen Demand Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Chemical oxygen demand</topic><topic>Comamonas</topic><topic>Community composition</topic><topic>community structure</topic><topic>Denitrification</topic><topic>denitrifying microorganisms</topic><topic>Enterobacter</topic><topic>Environmental aspects</topic><topic>Environmental Biotechnology</topic><topic>Equipment Design</topic><topic>Flavobacterium</topic><topic>Flow velocity</topic><topic>genes</topic><topic>Hollow fiber membranes</topic><topic>Hydrogenophaga</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Membrane reactors</topic><topic>Membranes, Artificial</topic><topic>Microbial colonies</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial mats</topic><topic>Microbiology</topic><topic>nitrifying bacteria</topic><topic>Nitrogen</topic><topic>Pallets</topic><topic>Pollutants</topic><topic>Reactors</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S</topic><topic>sequence analysis</topic><topic>Sewage</topic><topic>Sewage treatment</topic><topic>sodium bicarbonate</topic><topic>Studies</topic><topic>Thauera</topic><topic>Thermomonas</topic><topic>Waste Disposal, Fluid - instrumentation</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hai-Long</creatorcontrib><creatorcontrib>Zhao, Jie-Yu</creatorcontrib><creatorcontrib>Zhang, Hong-Yu</creatorcontrib><creatorcontrib>Chi, Chang-Qiao</creatorcontrib><creatorcontrib>Li, Bao-An</creatorcontrib><creatorcontrib>Wu, Xiao-Lei</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hai-Long</au><au>Zhao, Jie-Yu</au><au>Zhang, Hong-Yu</au><au>Chi, Chang-Qiao</au><au>Li, Bao-An</au><au>Wu, Xiao-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>99</volume><issue>7</issue><spage>3279</spage><epage>3290</epage><pages>3279-3290</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH₄-N, and NaHCO₃concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO₃concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH₄-N-rich environments, while Flavobacterium preferred to inhabit NH₄-N-poor or COD-rich environments. Conversely, the influent NH₄-N and NaHCO₃, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25431009</pmid><doi>10.1007/s00253-014-6204-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3279-3290
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1673381008
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acidovorax
Actinobacteria
Aeromonas
alpha-Proteobacteria
ammonium nitrogen
Analysis
Azospira
Bacteria
Bacteria - genetics
bacterial communities
biofilm
Biofilms
Biological Oxygen Demand Analysis
Biomedical and Life Sciences
Bioreactors
Bioreactors - microbiology
Biotechnology
Chemical engineering
Chemical oxygen demand
Comamonas
Community composition
community structure
Denitrification
denitrifying microorganisms
Enterobacter
Environmental aspects
Environmental Biotechnology
Equipment Design
Flavobacterium
Flow velocity
genes
Hollow fiber membranes
Hydrogenophaga
Laboratories
Life Sciences
Membrane reactors
Membranes, Artificial
Microbial colonies
Microbial Consortia - genetics
Microbial Genetics and Genomics
Microbial mats
Microbiology
nitrifying bacteria
Nitrogen
Pallets
Pollutants
Reactors
Real-Time Polymerase Chain Reaction
ribosomal RNA
RNA, Ribosomal, 16S
sequence analysis
Sewage
Sewage treatment
sodium bicarbonate
Studies
Thauera
Thermomonas
Waste Disposal, Fluid - instrumentation
Waste Disposal, Fluid - methods
Wastewater
Wastewater treatment
Water treatment
title Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20community%20shift%20along%20with%20the%20changes%20in%20operational%20conditions%20in%20a%20membrane-aerated%20biofilm%20reactor&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tian,%20Hai-Long&rft.date=2015-04-01&rft.volume=99&rft.issue=7&rft.spage=3279&rft.epage=3290&rft.pages=3279-3290&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-6204-7&rft_dat=%3Cgale_proqu%3EA429602166%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664398576&rft_id=info:pmid/25431009&rft_galeid=A429602166&rfr_iscdi=true