Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization

Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2015-06, Vol.46, p.285-291
Hauptverfasser: Kiri, Lauren, Boyd, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue
container_start_page 285
container_title Journal of the mechanical behavior of biomedical materials
container_volume 46
creator Kiri, Lauren
Boyd, Daniel
description Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.
doi_str_mv 10.1016/j.jmbbm.2015.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673074604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616115000491</els_id><sourcerecordid>1673074604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</originalsourceid><addsrcrecordid>eNp9UctO3TAQtaoiXuULKlVedpMwtpPYqdQFQrQgIdFFu7Z8nQn4Ko5T27cSXfEB3fGHfEl9uZRlVzM6PnPOeA4h7xnUDFh3uq7XfrXyNQfW1sBrAPmGHDIlVQVMwdvSy5ZVHevYATlKaQ3QASi1Tw54q7hibX9I_nyLODib3XxLbfBLSC67MD89PC4xLBjzPY04mS2W7tyS6BgivZ1MSrRAwWOkFj3OOX2iZ9RvpuxGY3PYwnOOZnpVRWqWomnsHc2BepMxuvIcluy8-_3s8I7sjWZKePJSj8mPLxffzy-r65uvV-dn15UVbZ8rIZhCaTvJLIeBq0a1hrcNyBYHNEL0KPpyoZENcjBWWlg13dAgZ4UIzPbimHzc6ZZ9fm4wZe1dsjhNZsawSZp1UoBsOmgKVeyoNoaUIo56ic6beK8Z6G0Meq2fY9DbGDRwXWIoUx9eDDYrj8PrzL-7F8LnHQHLN385jDpZh7MtWUS0WQ_B_dfgL7E6npI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673074604</pqid></control><display><type>article</type><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiri, Lauren ; Boyd, Daniel</creator><creatorcontrib>Kiri, Lauren ; Boyd, Daniel</creatorcontrib><description>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2015.02.007</identifier><identifier>PMID: 25828159</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Bone cement ; Central composite designs ; Compressive Strength ; Glass ionomer cement ; Glass Ionomer Cements - chemistry ; Materials Testing ; Mechanical Phenomena ; Nonlinear Dynamics ; Optimization ; Structure-Activity Relationship ; Temperature ; Time Factors ; Vertebroplasty</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2015-06, Vol.46, p.285-291</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</citedby><cites>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2015.02.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25828159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiri, Lauren</creatorcontrib><creatorcontrib>Boyd, Daniel</creatorcontrib><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</description><subject>Bone cement</subject><subject>Central composite designs</subject><subject>Compressive Strength</subject><subject>Glass ionomer cement</subject><subject>Glass Ionomer Cements - chemistry</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Structure-Activity Relationship</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Vertebroplasty</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctO3TAQtaoiXuULKlVedpMwtpPYqdQFQrQgIdFFu7Z8nQn4Ko5T27cSXfEB3fGHfEl9uZRlVzM6PnPOeA4h7xnUDFh3uq7XfrXyNQfW1sBrAPmGHDIlVQVMwdvSy5ZVHevYATlKaQ3QASi1Tw54q7hibX9I_nyLODib3XxLbfBLSC67MD89PC4xLBjzPY04mS2W7tyS6BgivZ1MSrRAwWOkFj3OOX2iZ9RvpuxGY3PYwnOOZnpVRWqWomnsHc2BepMxuvIcluy8-_3s8I7sjWZKePJSj8mPLxffzy-r65uvV-dn15UVbZ8rIZhCaTvJLIeBq0a1hrcNyBYHNEL0KPpyoZENcjBWWlg13dAgZ4UIzPbimHzc6ZZ9fm4wZe1dsjhNZsawSZp1UoBsOmgKVeyoNoaUIo56ic6beK8Z6G0Meq2fY9DbGDRwXWIoUx9eDDYrj8PrzL-7F8LnHQHLN385jDpZh7MtWUS0WQ_B_dfgL7E6npI</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Kiri, Lauren</creator><creator>Boyd, Daniel</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201506</creationdate><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><author>Kiri, Lauren ; Boyd, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bone cement</topic><topic>Central composite designs</topic><topic>Compressive Strength</topic><topic>Glass ionomer cement</topic><topic>Glass Ionomer Cements - chemistry</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Structure-Activity Relationship</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Vertebroplasty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiri, Lauren</creatorcontrib><creatorcontrib>Boyd, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiri, Lauren</au><au>Boyd, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2015-06</date><risdate>2015</risdate><volume>46</volume><spage>285</spage><epage>291</epage><pages>285-291</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25828159</pmid><doi>10.1016/j.jmbbm.2015.02.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2015-06, Vol.46, p.285-291
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_1673074604
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bone cement
Central composite designs
Compressive Strength
Glass ionomer cement
Glass Ionomer Cements - chemistry
Materials Testing
Mechanical Phenomena
Nonlinear Dynamics
Optimization
Structure-Activity Relationship
Temperature
Time Factors
Vertebroplasty
title Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20composition%E2%80%93property%20relationships%20for%20glass%20ionomer%20cements:%20A%20multifactor%20central%20composite%20approach%20to%20material%20optimization&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Kiri,%20Lauren&rft.date=2015-06&rft.volume=46&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2015.02.007&rft_dat=%3Cproquest_cross%3E1673074604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673074604&rft_id=info:pmid/25828159&rft_els_id=S1751616115000491&rfr_iscdi=true