Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization
Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GI...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2015-06, Vol.46, p.285-291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 46 |
creator | Kiri, Lauren Boyd, Daniel |
description | Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs. |
doi_str_mv | 10.1016/j.jmbbm.2015.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673074604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616115000491</els_id><sourcerecordid>1673074604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</originalsourceid><addsrcrecordid>eNp9UctO3TAQtaoiXuULKlVedpMwtpPYqdQFQrQgIdFFu7Z8nQn4Ko5T27cSXfEB3fGHfEl9uZRlVzM6PnPOeA4h7xnUDFh3uq7XfrXyNQfW1sBrAPmGHDIlVQVMwdvSy5ZVHevYATlKaQ3QASi1Tw54q7hibX9I_nyLODib3XxLbfBLSC67MD89PC4xLBjzPY04mS2W7tyS6BgivZ1MSrRAwWOkFj3OOX2iZ9RvpuxGY3PYwnOOZnpVRWqWomnsHc2BepMxuvIcluy8-_3s8I7sjWZKePJSj8mPLxffzy-r65uvV-dn15UVbZ8rIZhCaTvJLIeBq0a1hrcNyBYHNEL0KPpyoZENcjBWWlg13dAgZ4UIzPbimHzc6ZZ9fm4wZe1dsjhNZsawSZp1UoBsOmgKVeyoNoaUIo56ic6beK8Z6G0Meq2fY9DbGDRwXWIoUx9eDDYrj8PrzL-7F8LnHQHLN385jDpZh7MtWUS0WQ_B_dfgL7E6npI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673074604</pqid></control><display><type>article</type><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiri, Lauren ; Boyd, Daniel</creator><creatorcontrib>Kiri, Lauren ; Boyd, Daniel</creatorcontrib><description>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2015.02.007</identifier><identifier>PMID: 25828159</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Bone cement ; Central composite designs ; Compressive Strength ; Glass ionomer cement ; Glass Ionomer Cements - chemistry ; Materials Testing ; Mechanical Phenomena ; Nonlinear Dynamics ; Optimization ; Structure-Activity Relationship ; Temperature ; Time Factors ; Vertebroplasty</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2015-06, Vol.46, p.285-291</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</citedby><cites>FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2015.02.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25828159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiri, Lauren</creatorcontrib><creatorcontrib>Boyd, Daniel</creatorcontrib><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</description><subject>Bone cement</subject><subject>Central composite designs</subject><subject>Compressive Strength</subject><subject>Glass ionomer cement</subject><subject>Glass Ionomer Cements - chemistry</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Structure-Activity Relationship</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Vertebroplasty</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctO3TAQtaoiXuULKlVedpMwtpPYqdQFQrQgIdFFu7Z8nQn4Ko5T27cSXfEB3fGHfEl9uZRlVzM6PnPOeA4h7xnUDFh3uq7XfrXyNQfW1sBrAPmGHDIlVQVMwdvSy5ZVHevYATlKaQ3QASi1Tw54q7hibX9I_nyLODib3XxLbfBLSC67MD89PC4xLBjzPY04mS2W7tyS6BgivZ1MSrRAwWOkFj3OOX2iZ9RvpuxGY3PYwnOOZnpVRWqWomnsHc2BepMxuvIcluy8-_3s8I7sjWZKePJSj8mPLxffzy-r65uvV-dn15UVbZ8rIZhCaTvJLIeBq0a1hrcNyBYHNEL0KPpyoZENcjBWWlg13dAgZ4UIzPbimHzc6ZZ9fm4wZe1dsjhNZsawSZp1UoBsOmgKVeyoNoaUIo56ic6beK8Z6G0Meq2fY9DbGDRwXWIoUx9eDDYrj8PrzL-7F8LnHQHLN385jDpZh7MtWUS0WQ_B_dfgL7E6npI</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Kiri, Lauren</creator><creator>Boyd, Daniel</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201506</creationdate><title>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</title><author>Kiri, Lauren ; Boyd, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3318e7c671c20d28485a254075edea339e39101f1d7dac7c0b46d4e2148501c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bone cement</topic><topic>Central composite designs</topic><topic>Compressive Strength</topic><topic>Glass ionomer cement</topic><topic>Glass Ionomer Cements - chemistry</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Structure-Activity Relationship</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Vertebroplasty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiri, Lauren</creatorcontrib><creatorcontrib>Boyd, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiri, Lauren</au><au>Boyd, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2015-06</date><risdate>2015</risdate><volume>46</volume><spage>285</spage><epage>291</epage><pages>285-291</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Adjusting powder–liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation–property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25828159</pmid><doi>10.1016/j.jmbbm.2015.02.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2015-06, Vol.46, p.285-291 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1673074604 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Bone cement Central composite designs Compressive Strength Glass ionomer cement Glass Ionomer Cements - chemistry Materials Testing Mechanical Phenomena Nonlinear Dynamics Optimization Structure-Activity Relationship Temperature Time Factors Vertebroplasty |
title | Predicting composition–property relationships for glass ionomer cements: A multifactor central composite approach to material optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20composition%E2%80%93property%20relationships%20for%20glass%20ionomer%20cements:%20A%20multifactor%20central%20composite%20approach%20to%20material%20optimization&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Kiri,%20Lauren&rft.date=2015-06&rft.volume=46&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2015.02.007&rft_dat=%3Cproquest_cross%3E1673074604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673074604&rft_id=info:pmid/25828159&rft_els_id=S1751616115000491&rfr_iscdi=true |