BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension

Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2015-04, Vol.21 (4), p.596-608
Hauptverfasser: Diebold, Isabel, Hennigs, Jan K., Miyagawa, Kazuya, Li, Caiyun G., Nickel, Nils P., Kaschwich, Mark, Cao, Aiqin, Wang, Lingli, Reddy, Sushma, Chen, Pin-I, Nakahira, Kiichi, Alcazar, Miguel A. Alejandre, Hopper, Rachel K., Ji, Lijuan, Feldman, Brian J., Rabinovitch, Marlene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 4
container_start_page 596
container_title Cell metabolism
container_volume 21
creator Diebold, Isabel
Hennigs, Jan K.
Miyagawa, Kazuya
Li, Caiyun G.
Nickel, Nils P.
Kaschwich, Mark
Cao, Aiqin
Wang, Lingli
Reddy, Sushma
Chen, Pin-I
Nakahira, Kiichi
Alcazar, Miguel A. Alejandre
Hopper, Rachel K.
Ji, Lijuan
Feldman, Brian J.
Rabinovitch, Marlene
description Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2. [Display omitted] •Hypoxic pulmonary hypertension persists in mice with Bmpr2 deleted in endothelium•Impaired pulmonary artery regeneration is linked to mitochondrial DNA deletion•Hypoxia-reoxygenation reduces p53, PGC1α, ATP, and mitochondrial membrane potential•Reduced BMPR2 in normoxia causes hyperpolarized mitochondria and inflammation Human mutations in bone morphogenetic protein receptor 2 (BMPR2) have been linked to endothelial cell dysfunction in pulmonary arterial hypertension. Diebold et al. show that disrupted BMPR2 signaling results in aberrant mitochondrial metabolism, mtDNA damage, and apoptosis of pulmonary arterial endothelial cells.
doi_str_mv 10.1016/j.cmet.2015.03.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672873410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413115001138</els_id><sourcerecordid>1672873410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ab40d2b9cf4148e7bfee5cafd3bd1f9a14d49e699b6f5d710d03ad1cf006691f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wSrmPHmUhsytAfpBZGA6wtx75pPUrswXYi5hn60iSdwpKVbd1zPp3rk2VvKRQUqPiwK_SAqSiBVgWwAig8y05pw8q85iU8n-9VBTmnjJ5kr2LcATDBGvYyOymrlWAlb06zh0-3m21JNgEjhgkjubXJ63vvTLCqJ5ej08l6R5Qz5PPXc2LGYN0d2aL_fbhDpx6Hyc8AP_iE5MIZn-6xX8xr7HvyfQyTnebXQtjihCEi2Yz94J0KB3J92GNI6OLMeZ296FQf8c3TeZb9vLz4sb7Ob75dfVmf3-SaC5Fy1XIwZdvojlO-wrrtECutOsNaQ7tGUW54g6JpWtFVpqZggClDdQcgREM7dpa9P3L3wf8aMSY52KjnsMqhH6Okoi5XNeMUZml5lOrgYwzYyX2wwxxcUpBLCXInlxLkUoIEJuHR9O6JP7YDmn-Wv78-Cz4eBThvOVkMMmqLTqOxAXWSxtv_8f8AYHmbjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672873410</pqid></control><display><type>article</type><title>BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Diebold, Isabel ; Hennigs, Jan K. ; Miyagawa, Kazuya ; Li, Caiyun G. ; Nickel, Nils P. ; Kaschwich, Mark ; Cao, Aiqin ; Wang, Lingli ; Reddy, Sushma ; Chen, Pin-I ; Nakahira, Kiichi ; Alcazar, Miguel A. Alejandre ; Hopper, Rachel K. ; Ji, Lijuan ; Feldman, Brian J. ; Rabinovitch, Marlene</creator><creatorcontrib>Diebold, Isabel ; Hennigs, Jan K. ; Miyagawa, Kazuya ; Li, Caiyun G. ; Nickel, Nils P. ; Kaschwich, Mark ; Cao, Aiqin ; Wang, Lingli ; Reddy, Sushma ; Chen, Pin-I ; Nakahira, Kiichi ; Alcazar, Miguel A. Alejandre ; Hopper, Rachel K. ; Ji, Lijuan ; Feldman, Brian J. ; Rabinovitch, Marlene</creatorcontrib><description>Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2. [Display omitted] •Hypoxic pulmonary hypertension persists in mice with Bmpr2 deleted in endothelium•Impaired pulmonary artery regeneration is linked to mitochondrial DNA deletion•Hypoxia-reoxygenation reduces p53, PGC1α, ATP, and mitochondrial membrane potential•Reduced BMPR2 in normoxia causes hyperpolarized mitochondria and inflammation Human mutations in bone morphogenetic protein receptor 2 (BMPR2) have been linked to endothelial cell dysfunction in pulmonary arterial hypertension. Diebold et al. show that disrupted BMPR2 signaling results in aberrant mitochondrial metabolism, mtDNA damage, and apoptosis of pulmonary arterial endothelial cells.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2015.03.010</identifier><identifier>PMID: 25863249</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Analysis of Variance ; Animals ; Blotting, Western ; Bone Morphogenetic Protein Receptors, Type II - metabolism ; Cell Survival - physiology ; DNA - metabolism ; DNA Primers - genetics ; Endothelial Cells - physiology ; Flow Cytometry ; Fluorescent Antibody Technique ; HEK293 Cells ; Humans ; Hypertension, Pulmonary - metabolism ; Hypertension, Pulmonary - physiopathology ; Membrane Potential, Mitochondrial - physiology ; Mice ; Mitochondria - metabolism ; Models, Biological ; Polymerase Chain Reaction ; Pulmonary Artery - cytology ; Pulmonary Artery - physiology ; Regeneration - physiology ; RNA, Small Interfering - genetics</subject><ispartof>Cell metabolism, 2015-04, Vol.21 (4), p.596-608</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ab40d2b9cf4148e7bfee5cafd3bd1f9a14d49e699b6f5d710d03ad1cf006691f3</citedby><cites>FETCH-LOGICAL-c466t-ab40d2b9cf4148e7bfee5cafd3bd1f9a14d49e699b6f5d710d03ad1cf006691f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmet.2015.03.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25863249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diebold, Isabel</creatorcontrib><creatorcontrib>Hennigs, Jan K.</creatorcontrib><creatorcontrib>Miyagawa, Kazuya</creatorcontrib><creatorcontrib>Li, Caiyun G.</creatorcontrib><creatorcontrib>Nickel, Nils P.</creatorcontrib><creatorcontrib>Kaschwich, Mark</creatorcontrib><creatorcontrib>Cao, Aiqin</creatorcontrib><creatorcontrib>Wang, Lingli</creatorcontrib><creatorcontrib>Reddy, Sushma</creatorcontrib><creatorcontrib>Chen, Pin-I</creatorcontrib><creatorcontrib>Nakahira, Kiichi</creatorcontrib><creatorcontrib>Alcazar, Miguel A. Alejandre</creatorcontrib><creatorcontrib>Hopper, Rachel K.</creatorcontrib><creatorcontrib>Ji, Lijuan</creatorcontrib><creatorcontrib>Feldman, Brian J.</creatorcontrib><creatorcontrib>Rabinovitch, Marlene</creatorcontrib><title>BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2. [Display omitted] •Hypoxic pulmonary hypertension persists in mice with Bmpr2 deleted in endothelium•Impaired pulmonary artery regeneration is linked to mitochondrial DNA deletion•Hypoxia-reoxygenation reduces p53, PGC1α, ATP, and mitochondrial membrane potential•Reduced BMPR2 in normoxia causes hyperpolarized mitochondria and inflammation Human mutations in bone morphogenetic protein receptor 2 (BMPR2) have been linked to endothelial cell dysfunction in pulmonary arterial hypertension. Diebold et al. show that disrupted BMPR2 signaling results in aberrant mitochondrial metabolism, mtDNA damage, and apoptosis of pulmonary arterial endothelial cells.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Bone Morphogenetic Protein Receptors, Type II - metabolism</subject><subject>Cell Survival - physiology</subject><subject>DNA - metabolism</subject><subject>DNA Primers - genetics</subject><subject>Endothelial Cells - physiology</subject><subject>Flow Cytometry</subject><subject>Fluorescent Antibody Technique</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypertension, Pulmonary - metabolism</subject><subject>Hypertension, Pulmonary - physiopathology</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Polymerase Chain Reaction</subject><subject>Pulmonary Artery - cytology</subject><subject>Pulmonary Artery - physiology</subject><subject>Regeneration - physiology</subject><subject>RNA, Small Interfering - genetics</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wSrmPHmUhsytAfpBZGA6wtx75pPUrswXYi5hn60iSdwpKVbd1zPp3rk2VvKRQUqPiwK_SAqSiBVgWwAig8y05pw8q85iU8n-9VBTmnjJ5kr2LcATDBGvYyOymrlWAlb06zh0-3m21JNgEjhgkjubXJ63vvTLCqJ5ej08l6R5Qz5PPXc2LGYN0d2aL_fbhDpx6Hyc8AP_iE5MIZn-6xX8xr7HvyfQyTnebXQtjihCEi2Yz94J0KB3J92GNI6OLMeZ296FQf8c3TeZb9vLz4sb7Ob75dfVmf3-SaC5Fy1XIwZdvojlO-wrrtECutOsNaQ7tGUW54g6JpWtFVpqZggClDdQcgREM7dpa9P3L3wf8aMSY52KjnsMqhH6Okoi5XNeMUZml5lOrgYwzYyX2wwxxcUpBLCXInlxLkUoIEJuHR9O6JP7YDmn-Wv78-Cz4eBThvOVkMMmqLTqOxAXWSxtv_8f8AYHmbjg</recordid><startdate>20150407</startdate><enddate>20150407</enddate><creator>Diebold, Isabel</creator><creator>Hennigs, Jan K.</creator><creator>Miyagawa, Kazuya</creator><creator>Li, Caiyun G.</creator><creator>Nickel, Nils P.</creator><creator>Kaschwich, Mark</creator><creator>Cao, Aiqin</creator><creator>Wang, Lingli</creator><creator>Reddy, Sushma</creator><creator>Chen, Pin-I</creator><creator>Nakahira, Kiichi</creator><creator>Alcazar, Miguel A. Alejandre</creator><creator>Hopper, Rachel K.</creator><creator>Ji, Lijuan</creator><creator>Feldman, Brian J.</creator><creator>Rabinovitch, Marlene</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150407</creationdate><title>BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension</title><author>Diebold, Isabel ; Hennigs, Jan K. ; Miyagawa, Kazuya ; Li, Caiyun G. ; Nickel, Nils P. ; Kaschwich, Mark ; Cao, Aiqin ; Wang, Lingli ; Reddy, Sushma ; Chen, Pin-I ; Nakahira, Kiichi ; Alcazar, Miguel A. Alejandre ; Hopper, Rachel K. ; Ji, Lijuan ; Feldman, Brian J. ; Rabinovitch, Marlene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ab40d2b9cf4148e7bfee5cafd3bd1f9a14d49e699b6f5d710d03ad1cf006691f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Bone Morphogenetic Protein Receptors, Type II - metabolism</topic><topic>Cell Survival - physiology</topic><topic>DNA - metabolism</topic><topic>DNA Primers - genetics</topic><topic>Endothelial Cells - physiology</topic><topic>Flow Cytometry</topic><topic>Fluorescent Antibody Technique</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypertension, Pulmonary - metabolism</topic><topic>Hypertension, Pulmonary - physiopathology</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Polymerase Chain Reaction</topic><topic>Pulmonary Artery - cytology</topic><topic>Pulmonary Artery - physiology</topic><topic>Regeneration - physiology</topic><topic>RNA, Small Interfering - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Isabel</creatorcontrib><creatorcontrib>Hennigs, Jan K.</creatorcontrib><creatorcontrib>Miyagawa, Kazuya</creatorcontrib><creatorcontrib>Li, Caiyun G.</creatorcontrib><creatorcontrib>Nickel, Nils P.</creatorcontrib><creatorcontrib>Kaschwich, Mark</creatorcontrib><creatorcontrib>Cao, Aiqin</creatorcontrib><creatorcontrib>Wang, Lingli</creatorcontrib><creatorcontrib>Reddy, Sushma</creatorcontrib><creatorcontrib>Chen, Pin-I</creatorcontrib><creatorcontrib>Nakahira, Kiichi</creatorcontrib><creatorcontrib>Alcazar, Miguel A. Alejandre</creatorcontrib><creatorcontrib>Hopper, Rachel K.</creatorcontrib><creatorcontrib>Ji, Lijuan</creatorcontrib><creatorcontrib>Feldman, Brian J.</creatorcontrib><creatorcontrib>Rabinovitch, Marlene</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Isabel</au><au>Hennigs, Jan K.</au><au>Miyagawa, Kazuya</au><au>Li, Caiyun G.</au><au>Nickel, Nils P.</au><au>Kaschwich, Mark</au><au>Cao, Aiqin</au><au>Wang, Lingli</au><au>Reddy, Sushma</au><au>Chen, Pin-I</au><au>Nakahira, Kiichi</au><au>Alcazar, Miguel A. Alejandre</au><au>Hopper, Rachel K.</au><au>Ji, Lijuan</au><au>Feldman, Brian J.</au><au>Rabinovitch, Marlene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2015-04-07</date><risdate>2015</risdate><volume>21</volume><issue>4</issue><spage>596</spage><epage>608</epage><pages>596-608</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2. [Display omitted] •Hypoxic pulmonary hypertension persists in mice with Bmpr2 deleted in endothelium•Impaired pulmonary artery regeneration is linked to mitochondrial DNA deletion•Hypoxia-reoxygenation reduces p53, PGC1α, ATP, and mitochondrial membrane potential•Reduced BMPR2 in normoxia causes hyperpolarized mitochondria and inflammation Human mutations in bone morphogenetic protein receptor 2 (BMPR2) have been linked to endothelial cell dysfunction in pulmonary arterial hypertension. Diebold et al. show that disrupted BMPR2 signaling results in aberrant mitochondrial metabolism, mtDNA damage, and apoptosis of pulmonary arterial endothelial cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25863249</pmid><doi>10.1016/j.cmet.2015.03.010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2015-04, Vol.21 (4), p.596-608
issn 1550-4131
1932-7420
language eng
recordid cdi_proquest_miscellaneous_1672873410
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of Variance
Animals
Blotting, Western
Bone Morphogenetic Protein Receptors, Type II - metabolism
Cell Survival - physiology
DNA - metabolism
DNA Primers - genetics
Endothelial Cells - physiology
Flow Cytometry
Fluorescent Antibody Technique
HEK293 Cells
Humans
Hypertension, Pulmonary - metabolism
Hypertension, Pulmonary - physiopathology
Membrane Potential, Mitochondrial - physiology
Mice
Mitochondria - metabolism
Models, Biological
Polymerase Chain Reaction
Pulmonary Artery - cytology
Pulmonary Artery - physiology
Regeneration - physiology
RNA, Small Interfering - genetics
title BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMPR2%20Preserves%20Mitochondrial%20Function%20and%20DNA%20during%20Reoxygenation%20to%20Promote%20Endothelial%20Cell%20Survival%20and%20Reverse%20Pulmonary%20Hypertension&rft.jtitle=Cell%20metabolism&rft.au=Diebold,%20Isabel&rft.date=2015-04-07&rft.volume=21&rft.issue=4&rft.spage=596&rft.epage=608&rft.pages=596-608&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2015.03.010&rft_dat=%3Cproquest_cross%3E1672873410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672873410&rft_id=info:pmid/25863249&rft_els_id=S1550413115001138&rfr_iscdi=true