Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning

•75nm diameter chitosan nanofibers electrospun produced.•Enhanced Cr(VI) adsorption delivered by chitosan nanofibers.•Nanofiber's adsorption by diffusion limited due to fiber packing.•Most Cr(VI) co-anions had little or no effect on the adsorption except for SO42−.•Amino and hydroxyl groups of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2015-07, Vol.125, p.206-213
Hauptverfasser: Li, Lei, Li, Yanxiang, Cao, Lixia, Yang, Chuanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue
container_start_page 206
container_title Carbohydrate polymers
container_volume 125
creator Li, Lei
Li, Yanxiang
Cao, Lixia
Yang, Chuanfang
description •75nm diameter chitosan nanofibers electrospun produced.•Enhanced Cr(VI) adsorption delivered by chitosan nanofibers.•Nanofiber's adsorption by diffusion limited due to fiber packing.•Most Cr(VI) co-anions had little or no effect on the adsorption except for SO42−.•Amino and hydroxyl groups of chitosan were both engaged in the adsorption. Stacked chitosan nanofibers with an average diameter of 75nm were successfully produced by electrospinning using 5wt% chitosan in acetic acid as the spinning solution. The fibers were then cross-linked with glutaraldehyde to remove chromium [Cr(VI)] from water via static adsorption. It was found that the adsorption correlated well with pseudo-second order kinetic model, and followed a mixed isotherm of Freundlich and Langmuir. The maximum nanofibers adsorption capacity was 131.58mg/g, more than doubled that of chitosan powders. Common co-ions such as Cl−, NO3−, Na+, Ca2+ and Mg2+ had little or no effect on the adsorption but SO42− was an exception. Fourier transform infrared spectroscopy and X-ray photoelectron spectrophotometer analyses indicated that both amino and hydroxyl groups of chitosan were engaged in the adsorption.
doi_str_mv 10.1016/j.carbpol.2015.02.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672615394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861715001514</els_id><sourcerecordid>1672615394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-6d215a89aabadb3f15387ef4c969f734f991be2c02531ec62dd27609b2c498fd3</originalsourceid><addsrcrecordid>eNqFkEFPwyAUx4nR6Jx-BE2P89AKtIVyMmaZumSJF_VmCAWqLC1UaE3mp5e56dV34fB-__cePwAuEMwQROR6nUnh6961GYaozCDOYE4PwARVlKUoL4pDMIGoKNKKIHoCTkNYw1gEwWNwgsuqpIySCXhd2HdhpVaJfPeuM2OXzF6WV4lQwfl-MM4mYzD2LbHCumC-fkAzuCBs0pha-5AMwrTOx0a9SXSr5eBd6I21MXUGjhrRBn2-f6fg-W7xNH9IV4_3y_ntKpUlRENKFEalqJgQtVB13qAyr6huCskIa2heNIyhWmMJcZkjLQlWClMCWY1lwapG5VMw283tvfsYdRh4Z4LUbSusdmPgiFBM4lRWRLTcoTKeGbxueO9NJ_yGI8i3Zvma783yrVkOMY9mY-5yv2KsO63-Ur8qI3CzA3T86KfRngdp9Fat8VEKV878s-Ib-0KN_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672615394</pqid></control><display><type>article</type><title>Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Lei ; Li, Yanxiang ; Cao, Lixia ; Yang, Chuanfang</creator><creatorcontrib>Li, Lei ; Li, Yanxiang ; Cao, Lixia ; Yang, Chuanfang</creatorcontrib><description>•75nm diameter chitosan nanofibers electrospun produced.•Enhanced Cr(VI) adsorption delivered by chitosan nanofibers.•Nanofiber's adsorption by diffusion limited due to fiber packing.•Most Cr(VI) co-anions had little or no effect on the adsorption except for SO42−.•Amino and hydroxyl groups of chitosan were both engaged in the adsorption. Stacked chitosan nanofibers with an average diameter of 75nm were successfully produced by electrospinning using 5wt% chitosan in acetic acid as the spinning solution. The fibers were then cross-linked with glutaraldehyde to remove chromium [Cr(VI)] from water via static adsorption. It was found that the adsorption correlated well with pseudo-second order kinetic model, and followed a mixed isotherm of Freundlich and Langmuir. The maximum nanofibers adsorption capacity was 131.58mg/g, more than doubled that of chitosan powders. Common co-ions such as Cl−, NO3−, Na+, Ca2+ and Mg2+ had little or no effect on the adsorption but SO42− was an exception. Fourier transform infrared spectroscopy and X-ray photoelectron spectrophotometer analyses indicated that both amino and hydroxyl groups of chitosan were engaged in the adsorption.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2015.02.037</identifier><identifier>PMID: 25857976</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Absorption, Radiation ; Adsorption ; Chitosan ; Chitosan - chemistry ; Chromium (VI) ; Chromium - chemistry ; Electrospinning ; Nanofiber ; Nanofibers - chemistry</subject><ispartof>Carbohydrate polymers, 2015-07, Vol.125, p.206-213</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-6d215a89aabadb3f15387ef4c969f734f991be2c02531ec62dd27609b2c498fd3</citedby><cites>FETCH-LOGICAL-c501t-6d215a89aabadb3f15387ef4c969f734f991be2c02531ec62dd27609b2c498fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861715001514$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25857976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Yanxiang</creatorcontrib><creatorcontrib>Cao, Lixia</creatorcontrib><creatorcontrib>Yang, Chuanfang</creatorcontrib><title>Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•75nm diameter chitosan nanofibers electrospun produced.•Enhanced Cr(VI) adsorption delivered by chitosan nanofibers.•Nanofiber's adsorption by diffusion limited due to fiber packing.•Most Cr(VI) co-anions had little or no effect on the adsorption except for SO42−.•Amino and hydroxyl groups of chitosan were both engaged in the adsorption. Stacked chitosan nanofibers with an average diameter of 75nm were successfully produced by electrospinning using 5wt% chitosan in acetic acid as the spinning solution. The fibers were then cross-linked with glutaraldehyde to remove chromium [Cr(VI)] from water via static adsorption. It was found that the adsorption correlated well with pseudo-second order kinetic model, and followed a mixed isotherm of Freundlich and Langmuir. The maximum nanofibers adsorption capacity was 131.58mg/g, more than doubled that of chitosan powders. Common co-ions such as Cl−, NO3−, Na+, Ca2+ and Mg2+ had little or no effect on the adsorption but SO42− was an exception. Fourier transform infrared spectroscopy and X-ray photoelectron spectrophotometer analyses indicated that both amino and hydroxyl groups of chitosan were engaged in the adsorption.</description><subject>Absorption, Radiation</subject><subject>Adsorption</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chromium (VI)</subject><subject>Chromium - chemistry</subject><subject>Electrospinning</subject><subject>Nanofiber</subject><subject>Nanofibers - chemistry</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFPwyAUx4nR6Jx-BE2P89AKtIVyMmaZumSJF_VmCAWqLC1UaE3mp5e56dV34fB-__cePwAuEMwQROR6nUnh6961GYaozCDOYE4PwARVlKUoL4pDMIGoKNKKIHoCTkNYw1gEwWNwgsuqpIySCXhd2HdhpVaJfPeuM2OXzF6WV4lQwfl-MM4mYzD2LbHCumC-fkAzuCBs0pha-5AMwrTOx0a9SXSr5eBd6I21MXUGjhrRBn2-f6fg-W7xNH9IV4_3y_ntKpUlRENKFEalqJgQtVB13qAyr6huCskIa2heNIyhWmMJcZkjLQlWClMCWY1lwapG5VMw283tvfsYdRh4Z4LUbSusdmPgiFBM4lRWRLTcoTKeGbxueO9NJ_yGI8i3Zvma783yrVkOMY9mY-5yv2KsO63-Ur8qI3CzA3T86KfRngdp9Fat8VEKV878s-Ib-0KN_Q</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Li, Lei</creator><creator>Li, Yanxiang</creator><creator>Cao, Lixia</creator><creator>Yang, Chuanfang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150710</creationdate><title>Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning</title><author>Li, Lei ; Li, Yanxiang ; Cao, Lixia ; Yang, Chuanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-6d215a89aabadb3f15387ef4c969f734f991be2c02531ec62dd27609b2c498fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption, Radiation</topic><topic>Adsorption</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chromium (VI)</topic><topic>Chromium - chemistry</topic><topic>Electrospinning</topic><topic>Nanofiber</topic><topic>Nanofibers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Yanxiang</creatorcontrib><creatorcontrib>Cao, Lixia</creatorcontrib><creatorcontrib>Yang, Chuanfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Li, Yanxiang</au><au>Cao, Lixia</au><au>Yang, Chuanfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>125</volume><spage>206</spage><epage>213</epage><pages>206-213</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•75nm diameter chitosan nanofibers electrospun produced.•Enhanced Cr(VI) adsorption delivered by chitosan nanofibers.•Nanofiber's adsorption by diffusion limited due to fiber packing.•Most Cr(VI) co-anions had little or no effect on the adsorption except for SO42−.•Amino and hydroxyl groups of chitosan were both engaged in the adsorption. Stacked chitosan nanofibers with an average diameter of 75nm were successfully produced by electrospinning using 5wt% chitosan in acetic acid as the spinning solution. The fibers were then cross-linked with glutaraldehyde to remove chromium [Cr(VI)] from water via static adsorption. It was found that the adsorption correlated well with pseudo-second order kinetic model, and followed a mixed isotherm of Freundlich and Langmuir. The maximum nanofibers adsorption capacity was 131.58mg/g, more than doubled that of chitosan powders. Common co-ions such as Cl−, NO3−, Na+, Ca2+ and Mg2+ had little or no effect on the adsorption but SO42− was an exception. Fourier transform infrared spectroscopy and X-ray photoelectron spectrophotometer analyses indicated that both amino and hydroxyl groups of chitosan were engaged in the adsorption.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25857976</pmid><doi>10.1016/j.carbpol.2015.02.037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2015-07, Vol.125, p.206-213
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1672615394
source MEDLINE; Elsevier ScienceDirect Journals
subjects Absorption, Radiation
Adsorption
Chitosan
Chitosan - chemistry
Chromium (VI)
Chromium - chemistry
Electrospinning
Nanofiber
Nanofibers - chemistry
title Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20chromium%20(VI)%20adsorption%20using%20nanosized%20chitosan%20fibers%20tailored%20by%20electrospinning&rft.jtitle=Carbohydrate%20polymers&rft.au=Li,%20Lei&rft.date=2015-07-10&rft.volume=125&rft.spage=206&rft.epage=213&rft.pages=206-213&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2015.02.037&rft_dat=%3Cproquest_cross%3E1672615394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672615394&rft_id=info:pmid/25857976&rft_els_id=S0144861715001514&rfr_iscdi=true