Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence

Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2015-04, Vol.161 (2), p.374-386
Hauptverfasser: Maiuri, Paolo, Rupprecht, Jean-François, Wieser, Stefan, Ruprecht, Verena, Bénichou, Olivier, Carpi, Nicolas, Coppey, Mathieu, De Beco, Simon, Gov, Nir, Heisenberg, Carl-Philipp, Lage Crespo, Carolina, Lautenschlaeger, Franziska, Le Berre, Maël, Lennon-Dumenil, Ana-Maria, Raab, Matthew, Thiam, Hawa-Racine, Piel, Matthieu, Sixt, Michael, Voituriez, Raphaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 2
container_start_page 374
container_title Cell
container_volume 161
creator Maiuri, Paolo
Rupprecht, Jean-François
Wieser, Stefan
Ruprecht, Verena
Bénichou, Olivier
Carpi, Nicolas
Coppey, Mathieu
De Beco, Simon
Gov, Nir
Heisenberg, Carl-Philipp
Lage Crespo, Carolina
Lautenschlaeger, Franziska
Le Berre, Maël
Lennon-Dumenil, Ana-Maria
Raab, Matthew
Thiam, Hawa-Racine
Piel, Matthieu
Sixt, Michael
Voituriez, Raphaël
description Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. [Display omitted] •Speed and persistence of cells are exponentially correlated (the UCSP law)•Faster cells turn less: speed stabilizes cell directionality•The UCSP originates from transport of polarity factors by the retrograde actin flow•A physical model explains the UCSP and predicts a diagram of cell trajectories Despite the fact that different cell types follow distinct migration patterns, the locomotion of all cellular types follows one simple universal rule: the straightness of movement (persistence) is an exponential function of speed. This general law of cell migration is explained by a physical model based on the transport of polarity factors by the actin retrograde flows and predicts a diagram of possible cell trajectories.
doi_str_mv 10.1016/j.cell.2015.01.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672603363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867415001804</els_id><sourcerecordid>1672603363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b979016494e785171b4e70d5f0983dbba215370930200e44388becc8251efb5d3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOqdfwIPk6KX1JWmaBrzIcCooCuo5tMmbZHTtbNoNv70pmx495QV-___j_Qi5YJAyYPn1MrVY1ykHJlNgKcj8gEwYaJVkTPFDMgHQPClylZ2Q0xCWAFBIKY_JCZdKa1FkE_J6a3vf0HndbgN9RufLHmlJPxq_wS6UNZ21w7r2zSetsN8iNnQWd9K3NaKjZeN239fI-tBjY_GMHC3KOuD5_p2Sj_nd--wheXq5f5zdPiVWirxPKq10vCHTGapCMsWqOICTC9CFcFVVciaFAi2AA2CWiaKo0NqCS4aLSjoxJVe73nXXfg0YerPyYfRRNtgOwbBc8RyEyEVE-Q61XRtChwuz7vyq7L4NAzOaNEszJs1o0gAz0WQMXe77h2qF7i_yqy4CNzsA45Ubj50J1o8GnO_Q9sa1_r_-H17pgsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672603363</pqid></control><display><type>article</type><title>Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maiuri, Paolo ; Rupprecht, Jean-François ; Wieser, Stefan ; Ruprecht, Verena ; Bénichou, Olivier ; Carpi, Nicolas ; Coppey, Mathieu ; De Beco, Simon ; Gov, Nir ; Heisenberg, Carl-Philipp ; Lage Crespo, Carolina ; Lautenschlaeger, Franziska ; Le Berre, Maël ; Lennon-Dumenil, Ana-Maria ; Raab, Matthew ; Thiam, Hawa-Racine ; Piel, Matthieu ; Sixt, Michael ; Voituriez, Raphaël</creator><creatorcontrib>Maiuri, Paolo ; Rupprecht, Jean-François ; Wieser, Stefan ; Ruprecht, Verena ; Bénichou, Olivier ; Carpi, Nicolas ; Coppey, Mathieu ; De Beco, Simon ; Gov, Nir ; Heisenberg, Carl-Philipp ; Lage Crespo, Carolina ; Lautenschlaeger, Franziska ; Le Berre, Maël ; Lennon-Dumenil, Ana-Maria ; Raab, Matthew ; Thiam, Hawa-Racine ; Piel, Matthieu ; Sixt, Michael ; Voituriez, Raphaël</creatorcontrib><description>Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. [Display omitted] •Speed and persistence of cells are exponentially correlated (the UCSP law)•Faster cells turn less: speed stabilizes cell directionality•The UCSP originates from transport of polarity factors by the retrograde actin flow•A physical model explains the UCSP and predicts a diagram of cell trajectories Despite the fact that different cell types follow distinct migration patterns, the locomotion of all cellular types follows one simple universal rule: the straightness of movement (persistence) is an exponential function of speed. This general law of cell migration is explained by a physical model based on the transport of polarity factors by the actin retrograde flows and predicts a diagram of possible cell trajectories.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2015.01.056</identifier><identifier>PMID: 25799384</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - metabolism ; Animals ; Cell Line ; Cell Movement ; Cell Polarity ; Cells, Cultured ; Cytoskeleton - metabolism ; Humans ; Mice, Inbred C57BL ; Models, Biological ; Oryzias</subject><ispartof>Cell, 2015-04, Vol.161 (2), p.374-386</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b979016494e785171b4e70d5f0983dbba215370930200e44388becc8251efb5d3</citedby><cites>FETCH-LOGICAL-c536t-b979016494e785171b4e70d5f0983dbba215370930200e44388becc8251efb5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2015.01.056$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25799384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Rupprecht, Jean-François</creatorcontrib><creatorcontrib>Wieser, Stefan</creatorcontrib><creatorcontrib>Ruprecht, Verena</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><creatorcontrib>Carpi, Nicolas</creatorcontrib><creatorcontrib>Coppey, Mathieu</creatorcontrib><creatorcontrib>De Beco, Simon</creatorcontrib><creatorcontrib>Gov, Nir</creatorcontrib><creatorcontrib>Heisenberg, Carl-Philipp</creatorcontrib><creatorcontrib>Lage Crespo, Carolina</creatorcontrib><creatorcontrib>Lautenschlaeger, Franziska</creatorcontrib><creatorcontrib>Le Berre, Maël</creatorcontrib><creatorcontrib>Lennon-Dumenil, Ana-Maria</creatorcontrib><creatorcontrib>Raab, Matthew</creatorcontrib><creatorcontrib>Thiam, Hawa-Racine</creatorcontrib><creatorcontrib>Piel, Matthieu</creatorcontrib><creatorcontrib>Sixt, Michael</creatorcontrib><creatorcontrib>Voituriez, Raphaël</creatorcontrib><title>Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence</title><title>Cell</title><addtitle>Cell</addtitle><description>Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. [Display omitted] •Speed and persistence of cells are exponentially correlated (the UCSP law)•Faster cells turn less: speed stabilizes cell directionality•The UCSP originates from transport of polarity factors by the retrograde actin flow•A physical model explains the UCSP and predicts a diagram of cell trajectories Despite the fact that different cell types follow distinct migration patterns, the locomotion of all cellular types follows one simple universal rule: the straightness of movement (persistence) is an exponential function of speed. This general law of cell migration is explained by a physical model based on the transport of polarity factors by the actin retrograde flows and predicts a diagram of possible cell trajectories.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Movement</subject><subject>Cell Polarity</subject><subject>Cells, Cultured</subject><subject>Cytoskeleton - metabolism</subject><subject>Humans</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Oryzias</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLwzAUx4MoOqdfwIPk6KX1JWmaBrzIcCooCuo5tMmbZHTtbNoNv70pmx495QV-___j_Qi5YJAyYPn1MrVY1ykHJlNgKcj8gEwYaJVkTPFDMgHQPClylZ2Q0xCWAFBIKY_JCZdKa1FkE_J6a3vf0HndbgN9RufLHmlJPxq_wS6UNZ21w7r2zSetsN8iNnQWd9K3NaKjZeN239fI-tBjY_GMHC3KOuD5_p2Sj_nd--wheXq5f5zdPiVWirxPKq10vCHTGapCMsWqOICTC9CFcFVVciaFAi2AA2CWiaKo0NqCS4aLSjoxJVe73nXXfg0YerPyYfRRNtgOwbBc8RyEyEVE-Q61XRtChwuz7vyq7L4NAzOaNEszJs1o0gAz0WQMXe77h2qF7i_yqy4CNzsA45Ubj50J1o8GnO_Q9sa1_r_-H17pgsg</recordid><startdate>20150409</startdate><enddate>20150409</enddate><creator>Maiuri, Paolo</creator><creator>Rupprecht, Jean-François</creator><creator>Wieser, Stefan</creator><creator>Ruprecht, Verena</creator><creator>Bénichou, Olivier</creator><creator>Carpi, Nicolas</creator><creator>Coppey, Mathieu</creator><creator>De Beco, Simon</creator><creator>Gov, Nir</creator><creator>Heisenberg, Carl-Philipp</creator><creator>Lage Crespo, Carolina</creator><creator>Lautenschlaeger, Franziska</creator><creator>Le Berre, Maël</creator><creator>Lennon-Dumenil, Ana-Maria</creator><creator>Raab, Matthew</creator><creator>Thiam, Hawa-Racine</creator><creator>Piel, Matthieu</creator><creator>Sixt, Michael</creator><creator>Voituriez, Raphaël</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150409</creationdate><title>Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence</title><author>Maiuri, Paolo ; Rupprecht, Jean-François ; Wieser, Stefan ; Ruprecht, Verena ; Bénichou, Olivier ; Carpi, Nicolas ; Coppey, Mathieu ; De Beco, Simon ; Gov, Nir ; Heisenberg, Carl-Philipp ; Lage Crespo, Carolina ; Lautenschlaeger, Franziska ; Le Berre, Maël ; Lennon-Dumenil, Ana-Maria ; Raab, Matthew ; Thiam, Hawa-Racine ; Piel, Matthieu ; Sixt, Michael ; Voituriez, Raphaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b979016494e785171b4e70d5f0983dbba215370930200e44388becc8251efb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Movement</topic><topic>Cell Polarity</topic><topic>Cells, Cultured</topic><topic>Cytoskeleton - metabolism</topic><topic>Humans</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Oryzias</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Rupprecht, Jean-François</creatorcontrib><creatorcontrib>Wieser, Stefan</creatorcontrib><creatorcontrib>Ruprecht, Verena</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><creatorcontrib>Carpi, Nicolas</creatorcontrib><creatorcontrib>Coppey, Mathieu</creatorcontrib><creatorcontrib>De Beco, Simon</creatorcontrib><creatorcontrib>Gov, Nir</creatorcontrib><creatorcontrib>Heisenberg, Carl-Philipp</creatorcontrib><creatorcontrib>Lage Crespo, Carolina</creatorcontrib><creatorcontrib>Lautenschlaeger, Franziska</creatorcontrib><creatorcontrib>Le Berre, Maël</creatorcontrib><creatorcontrib>Lennon-Dumenil, Ana-Maria</creatorcontrib><creatorcontrib>Raab, Matthew</creatorcontrib><creatorcontrib>Thiam, Hawa-Racine</creatorcontrib><creatorcontrib>Piel, Matthieu</creatorcontrib><creatorcontrib>Sixt, Michael</creatorcontrib><creatorcontrib>Voituriez, Raphaël</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maiuri, Paolo</au><au>Rupprecht, Jean-François</au><au>Wieser, Stefan</au><au>Ruprecht, Verena</au><au>Bénichou, Olivier</au><au>Carpi, Nicolas</au><au>Coppey, Mathieu</au><au>De Beco, Simon</au><au>Gov, Nir</au><au>Heisenberg, Carl-Philipp</au><au>Lage Crespo, Carolina</au><au>Lautenschlaeger, Franziska</au><au>Le Berre, Maël</au><au>Lennon-Dumenil, Ana-Maria</au><au>Raab, Matthew</au><au>Thiam, Hawa-Racine</au><au>Piel, Matthieu</au><au>Sixt, Michael</au><au>Voituriez, Raphaël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2015-04-09</date><risdate>2015</risdate><volume>161</volume><issue>2</issue><spage>374</spage><epage>386</epage><pages>374-386</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. [Display omitted] •Speed and persistence of cells are exponentially correlated (the UCSP law)•Faster cells turn less: speed stabilizes cell directionality•The UCSP originates from transport of polarity factors by the retrograde actin flow•A physical model explains the UCSP and predicts a diagram of cell trajectories Despite the fact that different cell types follow distinct migration patterns, the locomotion of all cellular types follows one simple universal rule: the straightness of movement (persistence) is an exponential function of speed. This general law of cell migration is explained by a physical model based on the transport of polarity factors by the actin retrograde flows and predicts a diagram of possible cell trajectories.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25799384</pmid><doi>10.1016/j.cell.2015.01.056</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2015-04, Vol.161 (2), p.374-386
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_1672603363
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Actins - metabolism
Animals
Cell Line
Cell Movement
Cell Polarity
Cells, Cultured
Cytoskeleton - metabolism
Humans
Mice, Inbred C57BL
Models, Biological
Oryzias
title Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actin%20Flows%20Mediate%20a%20Universal%20Coupling%20between%20Cell%20Speed%20and%20Cell%20Persistence&rft.jtitle=Cell&rft.au=Maiuri,%20Paolo&rft.date=2015-04-09&rft.volume=161&rft.issue=2&rft.spage=374&rft.epage=386&rft.pages=374-386&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2015.01.056&rft_dat=%3Cproquest_cross%3E1672603363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672603363&rft_id=info:pmid/25799384&rft_els_id=S0092867415001804&rfr_iscdi=true