Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase

The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-04, Vol.137 (13), p.4558-4566
Hauptverfasser: Greene, Brandon L, Wu, Chang-Hao, McTernan, Patrick M, Adams, Michael W. W, Dyer, R. Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4566
container_issue 13
container_start_page 4558
container_title Journal of the American Chemical Society
container_volume 137
creator Greene, Brandon L
Wu, Chang-Hao
McTernan, Patrick M
Adams, Michael W. W
Dyer, R. Brian
description The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.
doi_str_mv 10.1021/jacs.5b01791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672089240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1672089240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EouVjY0YeGUixncRxRlRailQ-hjIBii6uTVMldrGTIf8eVy2wMJ1Oeu85vQ9CF5SMKGH0Zg3Sj9KS0CynB2hIU0ailDJ-iIaEEBZlgscDdOL9OqwJE_QYDVia5eFADNH7i7OtNdHYdptaLfGkVrJ11uCFA-O1cviuN9BU0uPK4Hal8BhaqPu2kvhRyRWYyjfYagz47amaqo9o1i-d_VQGvDpDRxpqr8738xS9TieL8SyaP98_jG_nEcQ5aSOmWSyAMYBQgUMoIGQi4jwRJc-hzJmI4yzVlPNQJQNJYq65ZrlOslIwnsan6GrH3Tj71SnfFk3lpaprMMp2vqA8C8ycJSREr3dR6az3Tuli46oGXF9QUmx9Flufxd5niF_uyV3ZqOVv-Efg3-vt1dp2zoSi_7O-AS_KfI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672089240</pqid></control><display><type>article</type><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</creator><creatorcontrib>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</creatorcontrib><description>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b01791</identifier><identifier>PMID: 25790178</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Catalytic Domain ; Electron Transport ; Hydrogen-Ion Concentration ; Hydrogenase - chemistry ; Hydrogenase - metabolism ; Kinetics ; Models, Molecular ; Photochemical Processes ; Protons ; Pyrococcus furiosus - enzymology ; Temperature</subject><ispartof>Journal of the American Chemical Society, 2015-04, Vol.137 (13), p.4558-4566</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</citedby><cites>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b01791$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b01791$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25790178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greene, Brandon L</creatorcontrib><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>McTernan, Patrick M</creatorcontrib><creatorcontrib>Adams, Michael W. W</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</description><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Electron Transport</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrogenase - chemistry</subject><subject>Hydrogenase - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Photochemical Processes</subject><subject>Protons</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Temperature</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PwzAQhi0EouVjY0YeGUixncRxRlRailQ-hjIBii6uTVMldrGTIf8eVy2wMJ1Oeu85vQ9CF5SMKGH0Zg3Sj9KS0CynB2hIU0ailDJ-iIaEEBZlgscDdOL9OqwJE_QYDVia5eFADNH7i7OtNdHYdptaLfGkVrJ11uCFA-O1cviuN9BU0uPK4Hal8BhaqPu2kvhRyRWYyjfYagz47amaqo9o1i-d_VQGvDpDRxpqr8738xS9TieL8SyaP98_jG_nEcQ5aSOmWSyAMYBQgUMoIGQi4jwRJc-hzJmI4yzVlPNQJQNJYq65ZrlOslIwnsan6GrH3Tj71SnfFk3lpaprMMp2vqA8C8ycJSREr3dR6az3Tuli46oGXF9QUmx9Flufxd5niF_uyV3ZqOVv-Efg3-vt1dp2zoSi_7O-AS_KfI8</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Greene, Brandon L</creator><creator>Wu, Chang-Hao</creator><creator>McTernan, Patrick M</creator><creator>Adams, Michael W. W</creator><creator>Dyer, R. Brian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150408</creationdate><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><author>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Electron Transport</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrogenase - chemistry</topic><topic>Hydrogenase - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Photochemical Processes</topic><topic>Protons</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greene, Brandon L</creatorcontrib><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>McTernan, Patrick M</creatorcontrib><creatorcontrib>Adams, Michael W. W</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greene, Brandon L</au><au>Wu, Chang-Hao</au><au>McTernan, Patrick M</au><au>Adams, Michael W. W</au><au>Dyer, R. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>137</volume><issue>13</issue><spage>4558</spage><epage>4566</epage><pages>4558-4566</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25790178</pmid><doi>10.1021/jacs.5b01791</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-04, Vol.137 (13), p.4558-4566
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1672089240
source MEDLINE; American Chemical Society Journals
subjects Biocatalysis
Catalytic Domain
Electron Transport
Hydrogen-Ion Concentration
Hydrogenase - chemistry
Hydrogenase - metabolism
Kinetics
Models, Molecular
Photochemical Processes
Protons
Pyrococcus furiosus - enzymology
Temperature
title Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-Coupled%20Electron%20Transfer%20Dynamics%20in%20the%20Catalytic%20Mechanism%20of%20a%20%5BNiFe%5D-Hydrogenase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Greene,%20Brandon%20L&rft.date=2015-04-08&rft.volume=137&rft.issue=13&rft.spage=4558&rft.epage=4566&rft.pages=4558-4566&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b01791&rft_dat=%3Cproquest_cross%3E1672089240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672089240&rft_id=info:pmid/25790178&rfr_iscdi=true