Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase
The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-04, Vol.137 (13), p.4558-4566 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4566 |
---|---|
container_issue | 13 |
container_start_page | 4558 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Greene, Brandon L Wu, Chang-Hao McTernan, Patrick M Adams, Michael W. W Dyer, R. Brian |
description | The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design. |
doi_str_mv | 10.1021/jacs.5b01791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672089240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1672089240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EouVjY0YeGUixncRxRlRailQ-hjIBii6uTVMldrGTIf8eVy2wMJ1Oeu85vQ9CF5SMKGH0Zg3Sj9KS0CynB2hIU0ailDJ-iIaEEBZlgscDdOL9OqwJE_QYDVia5eFADNH7i7OtNdHYdptaLfGkVrJ11uCFA-O1cviuN9BU0uPK4Hal8BhaqPu2kvhRyRWYyjfYagz47amaqo9o1i-d_VQGvDpDRxpqr8738xS9TieL8SyaP98_jG_nEcQ5aSOmWSyAMYBQgUMoIGQi4jwRJc-hzJmI4yzVlPNQJQNJYq65ZrlOslIwnsan6GrH3Tj71SnfFk3lpaprMMp2vqA8C8ycJSREr3dR6az3Tuli46oGXF9QUmx9Flufxd5niF_uyV3ZqOVv-Efg3-vt1dp2zoSi_7O-AS_KfI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672089240</pqid></control><display><type>article</type><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</creator><creatorcontrib>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</creatorcontrib><description>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b01791</identifier><identifier>PMID: 25790178</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Catalytic Domain ; Electron Transport ; Hydrogen-Ion Concentration ; Hydrogenase - chemistry ; Hydrogenase - metabolism ; Kinetics ; Models, Molecular ; Photochemical Processes ; Protons ; Pyrococcus furiosus - enzymology ; Temperature</subject><ispartof>Journal of the American Chemical Society, 2015-04, Vol.137 (13), p.4558-4566</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</citedby><cites>FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b01791$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b01791$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25790178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greene, Brandon L</creatorcontrib><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>McTernan, Patrick M</creatorcontrib><creatorcontrib>Adams, Michael W. W</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</description><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Electron Transport</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrogenase - chemistry</subject><subject>Hydrogenase - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Photochemical Processes</subject><subject>Protons</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Temperature</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PwzAQhi0EouVjY0YeGUixncRxRlRailQ-hjIBii6uTVMldrGTIf8eVy2wMJ1Oeu85vQ9CF5SMKGH0Zg3Sj9KS0CynB2hIU0ailDJ-iIaEEBZlgscDdOL9OqwJE_QYDVia5eFADNH7i7OtNdHYdptaLfGkVrJ11uCFA-O1cviuN9BU0uPK4Hal8BhaqPu2kvhRyRWYyjfYagz47amaqo9o1i-d_VQGvDpDRxpqr8738xS9TieL8SyaP98_jG_nEcQ5aSOmWSyAMYBQgUMoIGQi4jwRJc-hzJmI4yzVlPNQJQNJYq65ZrlOslIwnsan6GrH3Tj71SnfFk3lpaprMMp2vqA8C8ycJSREr3dR6az3Tuli46oGXF9QUmx9Flufxd5niF_uyV3ZqOVv-Efg3-vt1dp2zoSi_7O-AS_KfI8</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Greene, Brandon L</creator><creator>Wu, Chang-Hao</creator><creator>McTernan, Patrick M</creator><creator>Adams, Michael W. W</creator><creator>Dyer, R. Brian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150408</creationdate><title>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</title><author>Greene, Brandon L ; Wu, Chang-Hao ; McTernan, Patrick M ; Adams, Michael W. W ; Dyer, R. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-2f238a22aa7916a5208c483948b69ab9283375f1668637ac036f6f29f47b82653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Electron Transport</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrogenase - chemistry</topic><topic>Hydrogenase - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Photochemical Processes</topic><topic>Protons</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greene, Brandon L</creatorcontrib><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>McTernan, Patrick M</creatorcontrib><creatorcontrib>Adams, Michael W. W</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greene, Brandon L</au><au>Wu, Chang-Hao</au><au>McTernan, Patrick M</au><au>Adams, Michael W. W</au><au>Dyer, R. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>137</volume><issue>13</issue><spage>4558</spage><epage>4566</epage><pages>4558-4566</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR–. The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25790178</pmid><doi>10.1021/jacs.5b01791</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-04, Vol.137 (13), p.4558-4566 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1672089240 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biocatalysis Catalytic Domain Electron Transport Hydrogen-Ion Concentration Hydrogenase - chemistry Hydrogenase - metabolism Kinetics Models, Molecular Photochemical Processes Protons Pyrococcus furiosus - enzymology Temperature |
title | Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-Coupled%20Electron%20Transfer%20Dynamics%20in%20the%20Catalytic%20Mechanism%20of%20a%20%5BNiFe%5D-Hydrogenase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Greene,%20Brandon%20L&rft.date=2015-04-08&rft.volume=137&rft.issue=13&rft.spage=4558&rft.epage=4566&rft.pages=4558-4566&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b01791&rft_dat=%3Cproquest_cross%3E1672089240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672089240&rft_id=info:pmid/25790178&rfr_iscdi=true |