Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion

Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2015-03, Vol.427 (5), p.1102-1118
Hauptverfasser: Mayerhofer, Peter U., Tampé, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 5
container_start_page 1102
container_title Journal of molecular biology
container_volume 427
creator Mayerhofer, Peter U.
Tampé, Robert
description Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation. [Display omitted] •The heterodimeric transport complex TAP translocates peptides into the endoplasmic reticulum.•TAP cooperates within a multi-component MHC I peptide loading machinery.•The ABC transporter TAP is specifically inhibited by viral immune evasins.•ABC translocation machineries mediate intracellular peptide compartmentalization.
doi_str_mv 10.1016/j.jmb.2014.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1672087787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283614004938</els_id><sourcerecordid>1672087787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-608cd3bec6f0e92572f7f9e39f1a108b4837ccf8e8fffec02a2c607c034697c63</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWqsf4EZm6WbGl2SaZHBVpGpBcVPdhjTzoikzmZpMC_17R1pdunrwOPfCPYRcUSgoUHG7KlbtsmBAywKqAkAckREFVeVKcHVMRgCM5UxxcUbOU1oBwISX6pScsQljZQVyRF6nofcfGLJFNCE1nTW970L2YuynDxg9psyHbFqbde-3mM3bdhN8v8tMqLN3H02zf2E225o0JC_IiTNNwsvDHZO3h9ni_il_fn2c30-fc1sy3ucClK35Eq1wgBWbSOakq5BXjpphwbJUXFrrFCrnHFpghlkB0gIvRSWt4GNys-9dx-5rg6nXrU8Wm8YE7DZJUyEZKCmVHFC6R23sUoro9Dr61sSdpqB_POqVHjzqH48aKj14HDLXh_rNssX6L_ErbgDu9gAOI7ceo07WY7BY-4i213Xn_6n_Bmjng2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672087787</pqid></control><display><type>article</type><title>Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mayerhofer, Peter U. ; Tampé, Robert</creator><creatorcontrib>Mayerhofer, Peter U. ; Tampé, Robert</creatorcontrib><description>Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation. [Display omitted] •The heterodimeric transport complex TAP translocates peptides into the endoplasmic reticulum.•TAP cooperates within a multi-component MHC I peptide loading machinery.•The ABC transporter TAP is specifically inhibited by viral immune evasins.•ABC translocation machineries mediate intracellular peptide compartmentalization.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2014.09.006</identifier><identifier>PMID: 25224907</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptive Immunity - immunology ; Animals ; antigen presentation ; Antigen Presentation - immunology ; Antigens, Viral - immunology ; ATP-Binding Cassette Transporters - immunology ; Histocompatibility Antigens Class I - immunology ; Humans ; Immune Evasion - immunology ; membrane protein ; peptide transport ; peptide-loading complex ; Protein Transport - immunology ; viral immune evasion ; Viruses - immunology</subject><ispartof>Journal of molecular biology, 2015-03, Vol.427 (5), p.1102-1118</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-608cd3bec6f0e92572f7f9e39f1a108b4837ccf8e8fffec02a2c607c034697c63</citedby><cites>FETCH-LOGICAL-c423t-608cd3bec6f0e92572f7f9e39f1a108b4837ccf8e8fffec02a2c607c034697c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2014.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25224907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayerhofer, Peter U.</creatorcontrib><creatorcontrib>Tampé, Robert</creatorcontrib><title>Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation. [Display omitted] •The heterodimeric transport complex TAP translocates peptides into the endoplasmic reticulum.•TAP cooperates within a multi-component MHC I peptide loading machinery.•The ABC transporter TAP is specifically inhibited by viral immune evasins.•ABC translocation machineries mediate intracellular peptide compartmentalization.</description><subject>Adaptive Immunity - immunology</subject><subject>Animals</subject><subject>antigen presentation</subject><subject>Antigen Presentation - immunology</subject><subject>Antigens, Viral - immunology</subject><subject>ATP-Binding Cassette Transporters - immunology</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Humans</subject><subject>Immune Evasion - immunology</subject><subject>membrane protein</subject><subject>peptide transport</subject><subject>peptide-loading complex</subject><subject>Protein Transport - immunology</subject><subject>viral immune evasion</subject><subject>Viruses - immunology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFKAzEURYMoWqsf4EZm6WbGl2SaZHBVpGpBcVPdhjTzoikzmZpMC_17R1pdunrwOPfCPYRcUSgoUHG7KlbtsmBAywKqAkAckREFVeVKcHVMRgCM5UxxcUbOU1oBwISX6pScsQljZQVyRF6nofcfGLJFNCE1nTW970L2YuynDxg9psyHbFqbde-3mM3bdhN8v8tMqLN3H02zf2E225o0JC_IiTNNwsvDHZO3h9ni_il_fn2c30-fc1sy3ucClK35Eq1wgBWbSOakq5BXjpphwbJUXFrrFCrnHFpghlkB0gIvRSWt4GNys-9dx-5rg6nXrU8Wm8YE7DZJUyEZKCmVHFC6R23sUoro9Dr61sSdpqB_POqVHjzqH48aKj14HDLXh_rNssX6L_ErbgDu9gAOI7ceo07WY7BY-4i213Xn_6n_Bmjng2E</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Mayerhofer, Peter U.</creator><creator>Tampé, Robert</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150313</creationdate><title>Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion</title><author>Mayerhofer, Peter U. ; Tampé, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-608cd3bec6f0e92572f7f9e39f1a108b4837ccf8e8fffec02a2c607c034697c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive Immunity - immunology</topic><topic>Animals</topic><topic>antigen presentation</topic><topic>Antigen Presentation - immunology</topic><topic>Antigens, Viral - immunology</topic><topic>ATP-Binding Cassette Transporters - immunology</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Humans</topic><topic>Immune Evasion - immunology</topic><topic>membrane protein</topic><topic>peptide transport</topic><topic>peptide-loading complex</topic><topic>Protein Transport - immunology</topic><topic>viral immune evasion</topic><topic>Viruses - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayerhofer, Peter U.</creatorcontrib><creatorcontrib>Tampé, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayerhofer, Peter U.</au><au>Tampé, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>427</volume><issue>5</issue><spage>1102</spage><epage>1118</epage><pages>1102-1118</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation. [Display omitted] •The heterodimeric transport complex TAP translocates peptides into the endoplasmic reticulum.•TAP cooperates within a multi-component MHC I peptide loading machinery.•The ABC transporter TAP is specifically inhibited by viral immune evasins.•ABC translocation machineries mediate intracellular peptide compartmentalization.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25224907</pmid><doi>10.1016/j.jmb.2014.09.006</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2015-03, Vol.427 (5), p.1102-1118
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_1672087787
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adaptive Immunity - immunology
Animals
antigen presentation
Antigen Presentation - immunology
Antigens, Viral - immunology
ATP-Binding Cassette Transporters - immunology
Histocompatibility Antigens Class I - immunology
Humans
Immune Evasion - immunology
membrane protein
peptide transport
peptide-loading complex
Protein Transport - immunology
viral immune evasion
Viruses - immunology
title Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antigen%20Translocation%20Machineries%20in%20Adaptive%20Immunity%20and%20Viral%20Immune%20Evasion&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Mayerhofer,%20Peter%20U.&rft.date=2015-03-13&rft.volume=427&rft.issue=5&rft.spage=1102&rft.epage=1118&rft.pages=1102-1118&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2014.09.006&rft_dat=%3Cproquest_cross%3E1672087787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672087787&rft_id=info:pmid/25224907&rft_els_id=S0022283614004938&rfr_iscdi=true