Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor

A flow-injection analysis detection method for glucose is presented which is based on oxidation of glucose by glucise dehydrogenase with concomitant conversion of NAD + to NADH followed by chemiluminescent detection of NADH. The glucose dehydrogenase is immobilized via glutaraldehyde crosslinking to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 1993-01, Vol.281 (3), p.475-481
Hauptverfasser: Martin, Alice F., Nieman, Timothy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 3
container_start_page 475
container_title Analytica chimica acta
container_volume 281
creator Martin, Alice F.
Nieman, Timothy A.
description A flow-injection analysis detection method for glucose is presented which is based on oxidation of glucose by glucise dehydrogenase with concomitant conversion of NAD + to NADH followed by chemiluminescent detection of NADH. The glucose dehydrogenase is immobilized via glutaraldehyde crosslinking to controlled pore glass to form an immobilized enzyme reactor. The chemiluminescent reagent, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy) 2+ 3] is immobilized in a Nafion film coated on a platinum electrode to form a regenerable chemiluminescent sensor. The immobilized Ru(bpy) 2+ 3 is oxidized to Ru(bpy) 3+ 3 which then reacts with NADH produced by the enzyme reactor to yield light and Ru(bpy) 2+ 3. Ru(bpy) 2+ 3 is thus recycled and made available again. Conditions for optimum enzyme reactor efficiency and chemiluminescent detection are determined and reported for pH (about 6.5), flow-rate (2 ml min −1), and NAD + concentration (1–2.5 mM). At the optimum conditions a working curve is constructed where the upper limit for glucose detection is dependant on NAD + concentration and lower detection limit is 10 μM glucose. Signal reproductibility is 1–2% relative standard deviation. The method is very selective for glucose; some interference is seen from uric acid, ascorbic acid and catechol as well as species (such as oxalate and aliphatic amines) already known to chemiluminesce with the Ru(bpy) 2+ 3 sensor.
doi_str_mv 10.1016/0003-2670(93)85005-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16716509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0003267093850055</els_id><sourcerecordid>16716509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-92b7e77b505f8c28ce5b00736c4e373578801e903b4b22a67d0423b922ab293e3</originalsourceid><addsrcrecordid>eNp9kM2KFDEUhYMo2M74Bi6ykm6wnPxUKlUbQQZnbBhwo-uQpG53X6lKepKUULPyFXwVH2mexGp7cOnq3gPfOdx7CHnD2XvOeHPFGJOVaDRbd3LTKsZUpZ6RFW-1rGop6udk9Q95SV7l_H2RgrN6RX7dDpOPGej9ZEPBYgvGQKeMYU9toDiO0eGAD9DT_RPZw2HuU9xDsIuC8DCPQBNYX2JaPD21tCTMa_FOPP78XTk8zgn7edjQNJUDBJzG9Xa7of4AIw7TiAGyh1BohpBjuiQvdnbI8PppXpBvN5--Xn-u7r7cbq8_3lW-lrpUnXAatHaKqV3rRetBOca0bHwNUkul25Zx6Jh0tRPCNrpntZCuW3YnOgnygrw95x5TvJ8gFzPicscw2ABxyoY3mjeKdQtYn0GfYs4JduaYcLRpNpyZU__mVK45lWs6af72b9Ri-3C2wfLED4RkskcIHnpM4IvpI_4_4A8TQI-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16716509</pqid></control><display><type>article</type><title>Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor</title><source>Access via ScienceDirect (Elsevier)</source><creator>Martin, Alice F. ; Nieman, Timothy A.</creator><creatorcontrib>Martin, Alice F. ; Nieman, Timothy A.</creatorcontrib><description>A flow-injection analysis detection method for glucose is presented which is based on oxidation of glucose by glucise dehydrogenase with concomitant conversion of NAD + to NADH followed by chemiluminescent detection of NADH. The glucose dehydrogenase is immobilized via glutaraldehyde crosslinking to controlled pore glass to form an immobilized enzyme reactor. The chemiluminescent reagent, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy) 2+ 3] is immobilized in a Nafion film coated on a platinum electrode to form a regenerable chemiluminescent sensor. The immobilized Ru(bpy) 2+ 3 is oxidized to Ru(bpy) 3+ 3 which then reacts with NADH produced by the enzyme reactor to yield light and Ru(bpy) 2+ 3. Ru(bpy) 2+ 3 is thus recycled and made available again. Conditions for optimum enzyme reactor efficiency and chemiluminescent detection are determined and reported for pH (about 6.5), flow-rate (2 ml min −1), and NAD + concentration (1–2.5 mM). At the optimum conditions a working curve is constructed where the upper limit for glucose detection is dependant on NAD + concentration and lower detection limit is 10 μM glucose. Signal reproductibility is 1–2% relative standard deviation. The method is very selective for glucose; some interference is seen from uric acid, ascorbic acid and catechol as well as species (such as oxalate and aliphatic amines) already known to chemiluminesce with the Ru(bpy) 2+ 3 sensor.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/0003-2670(93)85005-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biosensors ; Chemiluminesce ; Enzyme reactor ; Flow injection ; Glucose quantitation ; Immobilized enzyme</subject><ispartof>Analytica chimica acta, 1993-01, Vol.281 (3), p.475-481</ispartof><rights>1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-92b7e77b505f8c28ce5b00736c4e373578801e903b4b22a67d0423b922ab293e3</citedby><cites>FETCH-LOGICAL-c437t-92b7e77b505f8c28ce5b00736c4e373578801e903b4b22a67d0423b922ab293e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0003-2670(93)85005-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Martin, Alice F.</creatorcontrib><creatorcontrib>Nieman, Timothy A.</creatorcontrib><title>Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor</title><title>Analytica chimica acta</title><description>A flow-injection analysis detection method for glucose is presented which is based on oxidation of glucose by glucise dehydrogenase with concomitant conversion of NAD + to NADH followed by chemiluminescent detection of NADH. The glucose dehydrogenase is immobilized via glutaraldehyde crosslinking to controlled pore glass to form an immobilized enzyme reactor. The chemiluminescent reagent, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy) 2+ 3] is immobilized in a Nafion film coated on a platinum electrode to form a regenerable chemiluminescent sensor. The immobilized Ru(bpy) 2+ 3 is oxidized to Ru(bpy) 3+ 3 which then reacts with NADH produced by the enzyme reactor to yield light and Ru(bpy) 2+ 3. Ru(bpy) 2+ 3 is thus recycled and made available again. Conditions for optimum enzyme reactor efficiency and chemiluminescent detection are determined and reported for pH (about 6.5), flow-rate (2 ml min −1), and NAD + concentration (1–2.5 mM). At the optimum conditions a working curve is constructed where the upper limit for glucose detection is dependant on NAD + concentration and lower detection limit is 10 μM glucose. Signal reproductibility is 1–2% relative standard deviation. The method is very selective for glucose; some interference is seen from uric acid, ascorbic acid and catechol as well as species (such as oxalate and aliphatic amines) already known to chemiluminesce with the Ru(bpy) 2+ 3 sensor.</description><subject>Biosensors</subject><subject>Chemiluminesce</subject><subject>Enzyme reactor</subject><subject>Flow injection</subject><subject>Glucose quantitation</subject><subject>Immobilized enzyme</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KFDEUhYMo2M74Bi6ykm6wnPxUKlUbQQZnbBhwo-uQpG53X6lKepKUULPyFXwVH2mexGp7cOnq3gPfOdx7CHnD2XvOeHPFGJOVaDRbd3LTKsZUpZ6RFW-1rGop6udk9Q95SV7l_H2RgrN6RX7dDpOPGej9ZEPBYgvGQKeMYU9toDiO0eGAD9DT_RPZw2HuU9xDsIuC8DCPQBNYX2JaPD21tCTMa_FOPP78XTk8zgn7edjQNJUDBJzG9Xa7of4AIw7TiAGyh1BohpBjuiQvdnbI8PppXpBvN5--Xn-u7r7cbq8_3lW-lrpUnXAatHaKqV3rRetBOca0bHwNUkul25Zx6Jh0tRPCNrpntZCuW3YnOgnygrw95x5TvJ8gFzPicscw2ABxyoY3mjeKdQtYn0GfYs4JduaYcLRpNpyZU__mVK45lWs6af72b9Ri-3C2wfLED4RkskcIHnpM4IvpI_4_4A8TQI-A</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Martin, Alice F.</creator><creator>Nieman, Timothy A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19930101</creationdate><title>Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor</title><author>Martin, Alice F. ; Nieman, Timothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-92b7e77b505f8c28ce5b00736c4e373578801e903b4b22a67d0423b922ab293e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Biosensors</topic><topic>Chemiluminesce</topic><topic>Enzyme reactor</topic><topic>Flow injection</topic><topic>Glucose quantitation</topic><topic>Immobilized enzyme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Alice F.</creatorcontrib><creatorcontrib>Nieman, Timothy A.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Alice F.</au><au>Nieman, Timothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor</atitle><jtitle>Analytica chimica acta</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>281</volume><issue>3</issue><spage>475</spage><epage>481</epage><pages>475-481</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>A flow-injection analysis detection method for glucose is presented which is based on oxidation of glucose by glucise dehydrogenase with concomitant conversion of NAD + to NADH followed by chemiluminescent detection of NADH. The glucose dehydrogenase is immobilized via glutaraldehyde crosslinking to controlled pore glass to form an immobilized enzyme reactor. The chemiluminescent reagent, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy) 2+ 3] is immobilized in a Nafion film coated on a platinum electrode to form a regenerable chemiluminescent sensor. The immobilized Ru(bpy) 2+ 3 is oxidized to Ru(bpy) 3+ 3 which then reacts with NADH produced by the enzyme reactor to yield light and Ru(bpy) 2+ 3. Ru(bpy) 2+ 3 is thus recycled and made available again. Conditions for optimum enzyme reactor efficiency and chemiluminescent detection are determined and reported for pH (about 6.5), flow-rate (2 ml min −1), and NAD + concentration (1–2.5 mM). At the optimum conditions a working curve is constructed where the upper limit for glucose detection is dependant on NAD + concentration and lower detection limit is 10 μM glucose. Signal reproductibility is 1–2% relative standard deviation. The method is very selective for glucose; some interference is seen from uric acid, ascorbic acid and catechol as well as species (such as oxalate and aliphatic amines) already known to chemiluminesce with the Ru(bpy) 2+ 3 sensor.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0003-2670(93)85005-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 1993-01, Vol.281 (3), p.475-481
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_16716509
source Access via ScienceDirect (Elsevier)
subjects Biosensors
Chemiluminesce
Enzyme reactor
Flow injection
Glucose quantitation
Immobilized enzyme
title Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20quantitation%20using%20an%20immobilized%20glucose%20dehydrogenase%20enzyme%20reactor%20and%20a%20tris(2,2%E2%80%B2-bipyridyl)%20ruthenium(II)%20chemiluminescent%20sensor&rft.jtitle=Analytica%20chimica%20acta&rft.au=Martin,%20Alice%20F.&rft.date=1993-01-01&rft.volume=281&rft.issue=3&rft.spage=475&rft.epage=481&rft.pages=475-481&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/0003-2670(93)85005-5&rft_dat=%3Cproquest_cross%3E16716509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16716509&rft_id=info:pmid/&rft_els_id=0003267093850055&rfr_iscdi=true