Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys

Phase equilibria of the quaternary Gd–Ti–Al–Cu system have been studied with particular respect to solidification and phase separation phenomena in metallic glasses. Along the section Gd55−xTixAl25Cu20 the primary solidifying phase changes from Gd2CuAl (x=0) toward α-Ti (x≥10) with rising Ti-fractio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calphad 2014-03, Vol.44, p.21-25
Hauptverfasser: Schmitz, S., Lindenkreuz, H.-G., Löser, W., Büchner, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 21
container_title Calphad
container_volume 44
creator Schmitz, S.
Lindenkreuz, H.-G.
Löser, W.
Büchner, B.
description Phase equilibria of the quaternary Gd–Ti–Al–Cu system have been studied with particular respect to solidification and phase separation phenomena in metallic glasses. Along the section Gd55−xTixAl25Cu20 the primary solidifying phase changes from Gd2CuAl (x=0) toward α-Ti (x≥10) with rising Ti-fraction x. This is accompanied by an upturn of the liquidus temperature from TL=745°C to TL>1100°C. The miscibility gap predicted from thermodynamic calculations for Gd55−xTixAl25Cu20 melts at intermediate Ti-fractions was not verified experimentally. Unlike binary Gd–Ti melts, levitated Gd–Ti–Al–Cu droplets do not exhibit liquid phase separation features after quenching from different holding temperatures, even at high melt undercooling up to 200K prior to solidification.
doi_str_mv 10.1016/j.calphad.2013.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671634628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591613000692</els_id><sourcerecordid>1671634628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-cfc7cb25f93ec7636989df1246e5a9c0be5e6f6620dcfb8e6f1eb9d2f4c7e14c3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQ9AEkSuETkHLkQIIdJ05yQlUFBakSl3K2HHstXLlxaidIvfEP_CFfgvvg3MvsrnZmtDsI3RGcEUzY4zqTwvafQmU5JjTDLMMEX6AJpqxIy4awK3QdwhpjXFFaTJBZmu1oVBIlAZIAvfBiMK57SIKzRhlt5GFORPdPGrzognZ-c1iExOlkoX6_f1bmQDr1EWY2wnxMhLVuF27QpRY2wO2pTtHHy_Nq_pou3xdv89kylbQqh1RqWck2L3VDQVaMsqZulCZ5waAUjcQtlMA0YzlWUrd17Am0jcp1ISsghaRTdH_07b3bjhAGvjFBgrWiAzcGTlhFGC1YXp-nlhQ3NWniGVNUHqnSuxA8aN57sxF-xwnm--T5mp-S5_vkOWY8Jh91T0cdxJe_DHgepIFOgjIe5MCVM2cc_gA5CZYz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530981976</pqid></control><display><type>article</type><title>Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Schmitz, S. ; Lindenkreuz, H.-G. ; Löser, W. ; Büchner, B.</creator><creatorcontrib>Schmitz, S. ; Lindenkreuz, H.-G. ; Löser, W. ; Büchner, B.</creatorcontrib><description>Phase equilibria of the quaternary Gd–Ti–Al–Cu system have been studied with particular respect to solidification and phase separation phenomena in metallic glasses. Along the section Gd55−xTixAl25Cu20 the primary solidifying phase changes from Gd2CuAl (x=0) toward α-Ti (x≥10) with rising Ti-fraction x. This is accompanied by an upturn of the liquidus temperature from TL=745°C to TL&gt;1100°C. The miscibility gap predicted from thermodynamic calculations for Gd55−xTixAl25Cu20 melts at intermediate Ti-fractions was not verified experimentally. Unlike binary Gd–Ti melts, levitated Gd–Ti–Al–Cu droplets do not exhibit liquid phase separation features after quenching from different holding temperatures, even at high melt undercooling up to 200K prior to solidification.</description><identifier>ISSN: 0364-5916</identifier><identifier>DOI: 10.1016/j.calphad.2013.06.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Droplets ; Electromagnetic levitation ; Liquid phases ; Melts ; Metallic glasses ; Phase diagram data ; Phase transformations ; Separation ; Solidification ; Titanium ; Titanium alloys ; Undercooled melts</subject><ispartof>Calphad, 2014-03, Vol.44, p.21-25</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-cfc7cb25f93ec7636989df1246e5a9c0be5e6f6620dcfb8e6f1eb9d2f4c7e14c3</citedby><cites>FETCH-LOGICAL-c375t-cfc7cb25f93ec7636989df1246e5a9c0be5e6f6620dcfb8e6f1eb9d2f4c7e14c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0364591613000692$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Schmitz, S.</creatorcontrib><creatorcontrib>Lindenkreuz, H.-G.</creatorcontrib><creatorcontrib>Löser, W.</creatorcontrib><creatorcontrib>Büchner, B.</creatorcontrib><title>Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys</title><title>Calphad</title><description>Phase equilibria of the quaternary Gd–Ti–Al–Cu system have been studied with particular respect to solidification and phase separation phenomena in metallic glasses. Along the section Gd55−xTixAl25Cu20 the primary solidifying phase changes from Gd2CuAl (x=0) toward α-Ti (x≥10) with rising Ti-fraction x. This is accompanied by an upturn of the liquidus temperature from TL=745°C to TL&gt;1100°C. The miscibility gap predicted from thermodynamic calculations for Gd55−xTixAl25Cu20 melts at intermediate Ti-fractions was not verified experimentally. Unlike binary Gd–Ti melts, levitated Gd–Ti–Al–Cu droplets do not exhibit liquid phase separation features after quenching from different holding temperatures, even at high melt undercooling up to 200K prior to solidification.</description><subject>Computer simulation</subject><subject>Droplets</subject><subject>Electromagnetic levitation</subject><subject>Liquid phases</subject><subject>Melts</subject><subject>Metallic glasses</subject><subject>Phase diagram data</subject><subject>Phase transformations</subject><subject>Separation</subject><subject>Solidification</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Undercooled melts</subject><issn>0364-5916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQ9AEkSuETkHLkQIIdJ05yQlUFBakSl3K2HHstXLlxaidIvfEP_CFfgvvg3MvsrnZmtDsI3RGcEUzY4zqTwvafQmU5JjTDLMMEX6AJpqxIy4awK3QdwhpjXFFaTJBZmu1oVBIlAZIAvfBiMK57SIKzRhlt5GFORPdPGrzognZ-c1iExOlkoX6_f1bmQDr1EWY2wnxMhLVuF27QpRY2wO2pTtHHy_Nq_pou3xdv89kylbQqh1RqWck2L3VDQVaMsqZulCZ5waAUjcQtlMA0YzlWUrd17Am0jcp1ISsghaRTdH_07b3bjhAGvjFBgrWiAzcGTlhFGC1YXp-nlhQ3NWniGVNUHqnSuxA8aN57sxF-xwnm--T5mp-S5_vkOWY8Jh91T0cdxJe_DHgepIFOgjIe5MCVM2cc_gA5CZYz</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Schmitz, S.</creator><creator>Lindenkreuz, H.-G.</creator><creator>Löser, W.</creator><creator>Büchner, B.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys</title><author>Schmitz, S. ; Lindenkreuz, H.-G. ; Löser, W. ; Büchner, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-cfc7cb25f93ec7636989df1246e5a9c0be5e6f6620dcfb8e6f1eb9d2f4c7e14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Droplets</topic><topic>Electromagnetic levitation</topic><topic>Liquid phases</topic><topic>Melts</topic><topic>Metallic glasses</topic><topic>Phase diagram data</topic><topic>Phase transformations</topic><topic>Separation</topic><topic>Solidification</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Undercooled melts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, S.</creatorcontrib><creatorcontrib>Lindenkreuz, H.-G.</creatorcontrib><creatorcontrib>Löser, W.</creatorcontrib><creatorcontrib>Büchner, B.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, S.</au><au>Lindenkreuz, H.-G.</au><au>Löser, W.</au><au>Büchner, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys</atitle><jtitle>Calphad</jtitle><date>2014-03</date><risdate>2014</risdate><volume>44</volume><spage>21</spage><epage>25</epage><pages>21-25</pages><issn>0364-5916</issn><abstract>Phase equilibria of the quaternary Gd–Ti–Al–Cu system have been studied with particular respect to solidification and phase separation phenomena in metallic glasses. Along the section Gd55−xTixAl25Cu20 the primary solidifying phase changes from Gd2CuAl (x=0) toward α-Ti (x≥10) with rising Ti-fraction x. This is accompanied by an upturn of the liquidus temperature from TL=745°C to TL&gt;1100°C. The miscibility gap predicted from thermodynamic calculations for Gd55−xTixAl25Cu20 melts at intermediate Ti-fractions was not verified experimentally. Unlike binary Gd–Ti melts, levitated Gd–Ti–Al–Cu droplets do not exhibit liquid phase separation features after quenching from different holding temperatures, even at high melt undercooling up to 200K prior to solidification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2013.06.010</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-5916
ispartof Calphad, 2014-03, Vol.44, p.21-25
issn 0364-5916
language eng
recordid cdi_proquest_miscellaneous_1671634628
source Elsevier ScienceDirect Journals
subjects Computer simulation
Droplets
Electromagnetic levitation
Liquid phases
Melts
Metallic glasses
Phase diagram data
Phase transformations
Separation
Solidification
Titanium
Titanium alloys
Undercooled melts
title Liquid phase separation, solidification and phase transformations of Gd–Ti and Gd–Ti–Al–Cu alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20phase%20separation,%20solidification%20and%20phase%20transformations%20of%20Gd%E2%80%93Ti%20and%20Gd%E2%80%93Ti%E2%80%93Al%E2%80%93Cu%20alloys&rft.jtitle=Calphad&rft.au=Schmitz,%20S.&rft.date=2014-03&rft.volume=44&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.issn=0364-5916&rft_id=info:doi/10.1016/j.calphad.2013.06.010&rft_dat=%3Cproquest_cross%3E1671634628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530981976&rft_id=info:pmid/&rft_els_id=S0364591613000692&rfr_iscdi=true