Characterization of indirect X-ray imaging detector based on nanocrystalline gadolinium oxide scintillators for high-resolution imaging application

Nanocrystalline Gd2O3:Eu scintillating powders were successfully synthesized through a co-precipitation process for X-ray imaging detector applications. In this work, as-synthesized sample was further calcinated at different temperature, time with 1–10h and doped-Eu3+ concentration with 1–10mol% in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2013-01, Vol.699, p.129-133
Hauptverfasser: Seo, Chang-Woo, Kyung Cha, Bo, Jeon, Sungchae, Kyung Kim, Ryun, Huh, Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline Gd2O3:Eu scintillating powders were successfully synthesized through a co-precipitation process for X-ray imaging detector applications. In this work, as-synthesized sample was further calcinated at different temperature, time with 1–10h and doped-Eu3+ concentration with 1–10mol% in the electrical furnace. The characterization such as the crystal structures and microstructure of Gd2O3:Eu scintillator were measured by XRD and SEM experiment. The phase transition from cubic to monoclinic structure was observed at 1300°C calcination temperature. Dominant emission peak of sample with cubic structure was appeared at 611nm under 266nm UV light excitation. After scintillation properties of synthesized Gd2O3:Eu scintillator were investigated, Gd2O3:Eu scintillating films with different thickness was fabricated onto glass substrate by a screen printing method. And then X-ray imaging performance in terms of the light response to X-ray exposure dose, signal-to-noise ratio (SNR) and spatial resolution were measured by combining the fabricated Gd2O3:Eu screen films with a lens-coupled CCD imaging detector under radiographic system conditions.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2012.05.072